Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Устройства контроля параметров и генерирования локальных геомагнитных возмущений в задачах моделирования и обнаружения магнитопатогенных зон Миловзоров, Алексей Георгиевич

Устройства контроля параметров и генерирования локальных геомагнитных возмущений в задачах моделирования и обнаружения магнитопатогенных зон
<
Устройства контроля параметров и генерирования локальных геомагнитных возмущений в задачах моделирования и обнаружения магнитопатогенных зон Устройства контроля параметров и генерирования локальных геомагнитных возмущений в задачах моделирования и обнаружения магнитопатогенных зон Устройства контроля параметров и генерирования локальных геомагнитных возмущений в задачах моделирования и обнаружения магнитопатогенных зон Устройства контроля параметров и генерирования локальных геомагнитных возмущений в задачах моделирования и обнаружения магнитопатогенных зон Устройства контроля параметров и генерирования локальных геомагнитных возмущений в задачах моделирования и обнаружения магнитопатогенных зон
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Миловзоров, Алексей Георгиевич. Устройства контроля параметров и генерирования локальных геомагнитных возмущений в задачах моделирования и обнаружения магнитопатогенных зон : диссертация ... кандидата технических наук : 05.11.13 / Миловзоров Алексей Георгиевич; [Место защиты: Ин-т прикладной механики УрО РАН].- Ижевск, 2010.- 192 с.: ил. РГБ ОД, 61 11-5/44

Введение к работе

Актуальность. Геомагнитное поле - один из постоянно действующих факторов природной среды. Все живое на планете Земля испытывает на себе действие геомагнитного поля в течение всего жизненного цикла, причем многие ученые сходятся во мнении, что геомагнитное поле является одним из факторов эволюции. Существует естественный геомагнитный фон, включающий в себя постоянную составляющую порядка 50 мкТл и вариации в виде медленно меняющихся составляющих в пределах 50-^100 нТл.

На естественный геомагнитный фон оказывают существенные возмущающие воздействия корпускулярные излучения, связанные с активными непериодическими явлениями на Солнце - вспышками и протуберанцами. Такие геомагнитные возмущения, называемые магнитными бурями, достигают значений 500 нТл и более и действуют от нескольких часов до нескольких суток.

Известно, что во время магнитных бурь нарушаются плавные течения биоритмов, что оказывает негативное влияние на здоровье людей, их жизнедеятельность, а зачастую приводит к резкому ухудшению состояния пациентов вплоть до летальных исходов.

К геомагнитным возмущениям относятся не только медленно меняющиеся естественные вариации, включая магнитные бури, но также статические и динамические возмущения техногенного происхождения, образующие магнитопатогенные локальные зоны в производственных и жилых помещениях.

Врачи, исследующие причины заболеваний людей в России и за рубежом, отмечают повышенный риск (более 10 раз) длительного пребывания организма человека в условиях воздействия магнитных полей промышленной частоты 50 Гц в быту и на производстве интенсивностью более 0,2 мкТл. Согласно нормативному документу СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях», предельно-допустимые уровни (ПДУ) составляют от 100 до 2000 мкТл, а для жилых помещений - 10 мкТл. Зарубежные строительные компании и фирмы-изготовители технических средств руководствуются нормами стандарта ISO 2001, где ПДУ не превышает 0,16 мкТл. Причем наиболее опасной средой являются зоны квазистационарных и вращающихся магнитных полей (ВМП).

По данным академика Ю.В. Готовского и доктора медицинских наук А.Д. Белкина воздействие ВМП на человека биологически более опасно, чем действие установившихся значений однофазных магнитных полей (МП) промышленной частоты.

Контроль параметров квазистационарных и вращающихся МП представляет особый интерес в плане обеспечения электромагнитной безопасности жилых и производственных помещений. Исследование квазистационарных и вращающихся МП имеет наиважнейшее значение в решении экологических проблем, обусловленных техногенным воздействием на биосферу в целом и на состояние здоровья и жизнедеятельность человека - в частности. Решение подобного рода задач, как правило, осуществляется магнитометрической аппаратурой (ММА).

Известные работы ученых и специалистов (Ю.В. Афанасьева, В.Н. Бинги, Рябова Ю.Г., Н.В.Студенцова, Любимова В.В., В.Н. Хорева, Н.Н. Семенова, Г.В. Ломаева, В.Г. Гусева, В.Н. Пономарева, Ю.Г. Астраханцева, А.Л. Бучаенко, Г.Р. Броуна, Ю.Н. Кочемасова и др.) дают объективное представление о классическом, традиционном построении магнитометрической аппаратуры.

Анализ известных работ и разработок в области магнитометрии показывает, что именно данному направлению - исследованиям локальных геомагнитных возмущений, включая квазистационарные и вращающиеся МП, уделено недостаточное внимание.

Кроме того, недостаточное развитие в ракурсе рассматриваемых вопросов имеют исследования поведения биологических объектов в зоне действия квазистационарных и вращающихся МП, отсутствует аппаратура, позволяющая в исследовательских целях создавать физические модели локальных геомагнитных возмущений и проводить анализ их воздействий.

Поэтому, в плане дальнейшего развития магнитометрии, разработка и исследование устройств, предназначенных для контроля параметров, а также и систем генерирования квазистационарных и вращающихся МП, представляется весьма перспективными.

Разработка и создание подобной аппаратуры предоставит эффективный инструментарий соответствующим специалистам в области медицины, биологии, экологической безопасности и профзаболеваний в проведении комплексных исследований и систематизированного анализа, а также позволит выполнять компетентные экспертные оценки о степени влияний геомагнитных возмущений.

В связи с этим научно обоснованная разработка совокупности технических решений, которые бы осуществляли генерирование, управление и контроль параметров локальных геомагнитных возмущений, является важным при экспериментальных исследованиях и настройке магнитометрической аппаратуры, а также при проведении медико-биологических исследований, и представляет собой актуальную научно-техническую задачу, имеющую большое значение с точки зрения сохранения здоровья и обеспечения экологической безопасности человека.

Цель работы. Разработка научно обоснованных технических решений в области создания устройств контроля параметров и генерирования локальных геомагнитных возмущений с расширенными функциональными возможностями. Для реализации данной цели были сформулированы и решены следующие задачи.

  1. Формирование требований к магнитометрической аппаратуре для контроля параметров геомагнитных возмущений, а также требований к системам генерирования квазистационарных и вращающихся магнитных полей.

  2. Разработка математических моделей трехкомпонентных феррозондовых магнитометров (ТФМ), анализ погрешностей измерений и определение их доминирующих составляющих.

  3. Разработка многофункциональных устройств генерирования квазистапионарных и вращающихся МП с аналоговыми и дискретными режимами управления, а также магнитометрической аппаратуры с феррозондовыми датчиками, обеспечивающей контроль параметров постоянных, квазистационарных и вращающихся МП с реализацией функции выделения переменных составляющих.

  4. Разработка универсального стенда для исследования характеристик магнитометрической аппаратуры и физического моделирования локальных геомагнитных возмущений, включая квазистационарные и вращающиеся МП, а также выполнение комплекса экспериментальных исследований и внедрение результатов работы.

Объектом исследования являются геомагнитные возмущения в ограниченных пространствах, включая гипогеомагнитные, квазистационарные и вращающиеся магнитные поля.

Предметом исследования являются математические модели и
инструментальные погрешности трехкомпонентных феррозондовых

магнитометров и многофункциональные системы генерирования

квазистационарных и вращающихся магнитных полей.

Методы исследования. В работе для достижения цели и решения поставленных задач применялись методы теоретических и экспериментальных исследований.

При разработке математических моделей трехкомпонентного феррозондового магнитометра были использованы общая теория пространственной ориентации твердых тел, в частности - векторно-матричный математический аппарат.

Для подтверждения адекватности математических моделей

трехкомпонентного феррозондового магнитометра при определенных допущениях использовался метод вычислительного эксперимента.

Для выполнения вычислительных экспериментов и графической интерпретации результатов использованы пакеты прикладных программ: Turbo Pascal 7, Microsoft Excel 2003.

При проведении экспериментальных исследований использовались общая теория погрешностей, базирующаяся на методах дифференциальных вычислений, а также методы статистической обработки результатов измерений.

Достоверность и обоснованность полученных в работе результатов и
выводов подтверждена комплексным анализом математических моделей и
теоретическими исследованиями инструментальных погрешностей

трехкомпонентного феррозондового магнитометра, а также результатами проведенных вычислительных экспериментов и моделирования на ЭВМ, результатами экспериментальных исследований с использованием аттестованных средств измерений. Научная новизна.

Разработаны математические модели трехкомпонентного феррозондового магнитометра, из которых следуют как частные решения известные модели, при этом установлено, что для обеспечения повышенной точности измерения необходимо учитывать малые угловые параметры отклонения осей чувствительности феррозондов от осей ортонормированного базиса корпуса трехкомпонентного феррозондового магнитометра.

На основе анализа моделей трехкомпонентного феррозондового магнитометра показано, что для определения модуля полного вектора индукции контролируемого поля достаточно измеренных трех его ортогональных проекций, а для определения углов вариаций вектора индукции в горизонтальной и вертикальной плоскостях дополнительно необходимы численные значения углов пространственного положения корпуса трехкомпонентного феррозондового магнитометра по отношению к гравитационному полю Земли.

Установлено, что к доминирующим относятся инструментальные погрешности, распределение которых по диапазонам изменения углов пространственной

ориентации трехкомпонентного феррозондового магнитометра носит гармонический характер.

При разработке и создании устройств генерирования квазистационарных и
вращающихся МП установлено, что и при аналоговых и при дискретных
режимах управления индукторами формирование определенных годографов
результирующего вектора на плоскости или в пространстве осуществляется
путем программного регулирования токов в катушках.

Практическую ценность имеют:

математические модели трехкомпонентного феррозондового магнитометра, учитывающие комплекс малых угловых параметров отклонения осей чувствительности феррозондов от осей ортонормированного базиса корпуса, составляющие фундаментальную основу программно-алгоритмического обеспечения магнитометрической аппаратуры при обработке результатов измерений;

совокупность технических решений в области построения систем генерирования квазистационарных и вращающихся МП с аналоговыми и дискретными режимами программного управления;

универсальный стенд, осуществляющий физическое моделирование локальных геомагнитных возмущений, включая квазистационарные и вращающиеся МП. На защиту выносятся:

  1. математические модели трехкомпонентного феррозондового магнитометра, учитывающие комплекс малых угловых параметров отклонения осей чувствительности феррозондов от осей ортонормированного базиса корпуса, и результаты анализа инструментальных погрешностей;

  2. совокупность технических решений в области построения устройств генерирования квазистационарных и вращающихся МП с аналоговыми и дискретными режимами программного управления для квадратурных и трехфазных компоновок контурных катушек;

  3. магнитометрическая аппаратура с феррозондовыми датчиками, обеспечивающая контроль параметров постоянных, квазистационарных и вращающихся МП с реализацией функции выделения переменных составляющих;

  4. универсальный стенд для исследований характеристик магнитометрической аппаратуры и физического моделирования локальных геомагнитных возмущений, а также результаты экспериментальных исследований.

Реализация результатов работы. Результаты диссертационной работы внедрены в учебный процесс ГОУ ВПО ИжГТУ, а именно в лабораторном практикуме, курсовом и дипломном проектировании на кафедре «Приборы и методы контроля качества», а также в ГУП Центр метрологических исследований «Урал - Гео».

Апробация работы. Основные положения диссертационной работы докладывались и обсуждались: на научной конференции «Информационные технологии в нефтегазовом сервисе» в 2006 г. (г. Уфа); на научной конференции «Новая техника и технологии для геофизических исследований скважин» в 2007г. (г. Уфа); на Всероссийской молодежной научной конференции «Мавлютовские чтения» в 2007 г. (г. Уфа); XLVII Международной научной студенческой конференции «Студент и научно-технический прогресс» в 2009 г. (г. Новосибирск); XV Международной научно-практической конференции студентов и молодых ученых «Современные техника и технологии СТТ-2009» в 2009 г. (г. Томск);

Всероссийской научно-технической конференции студентов и аспирантов «Измерение, контроль и диагностика» в 2010 г. (г. Ижевск); Международной научной конференции «Инновационные технологии в управлении, образовании, промышленности», АСТИНТЕХ-2010 в 2010 г. (г. Астрахань); III Российском Форуме «Российским инновациям - Российский капитал» в 2010 г. (г. Ижевск); на научной конференции «Информационные технологии в нефтегазовом сервисе» в 2010 г. (г. Уфа).

Публикации. По результатам исследований опубликовано 19 печатных работ, в том числе 2 статьи в изданиях, рекомендованных ВАК РФ, 11 статей в сборниках научных трудов и 6 публикаций в материалах конференций и сборниках тезисов докладов.

Структура и объем работы. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы, включающего 114 наименований, и приложения. Основная часть диссертации изложена на 186 страницах машинописного текста, содержит 62 рисунка и 7 таблиц.

Похожие диссертации на Устройства контроля параметров и генерирования локальных геомагнитных возмущений в задачах моделирования и обнаружения магнитопатогенных зон