Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Особенности эксплуатации добывающих скважин струйными насосными установками Гумерский Хаким Хасанович

Особенности эксплуатации добывающих скважин струйными насосными установками
<
Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками Особенности эксплуатации добывающих скважин струйными насосными установками
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Гумерский Хаким Хасанович. Особенности эксплуатации добывающих скважин струйными насосными установками : диссертация ... кандидата технических наук : 05.15.06. - Москва, 1996. - 131 с. РГБ ОД,

Содержание к диссертации

Введение 4

Некоторые особенности расчета струйных аппаратов для эксплуатации нефтяных скважин 10

1 Расчетная схема 10

2. Уравнение характеристики высоконапорного струйного аппарата 13

3. Уравнение характеристики низконапорного струйного аппарата 22

4. Исследование влияния свободного газа на коэффициент инжекции струйного насоса 25

5. Расчет коэффициента сепарации свободного газа у приема скважинной тандемной установки 31 Теоретические основы расчета тандемной установки 35

1. Методика и алгоритм расчета глубины спуска тандемной установки 36

2. Методика и алгоритм расчета подачи тандемной установки 46

3. Методика расчета физических свойств флюидов в процессе разгазирования 54

4. Методика расчета основных расходных характеристик газожидкостного потока и суммарного градиента давления 59 Разработка технических средств и технологии эксплуатации струйных насосных установок 66

1. Тандемная установка "УЭЦН - струйный насос" 66

2. Струйная насосная установка 76

Результаты промышленного использования тандемных установок и экономическая оценка применения струйных насосных установок 85

4.1. Анализ технологической эффективности применения тандемных установок 85

4.2. Экономическая оценка эффективности применения струйных насосных установок на месторождениях Западной Сибири 92

4.2.1.Общие положения 92

4.2.2.Показатели экономической оценки 93

4.2.3.Результаты экономической оценки 97

Основные выводы 125

Литература 127

Приложение 130 

Введение к работе

Применение струйных насосов в нефтяной промышленности СССР началось в 1958 году в Азербайджане. Для промывки песчаных пробок в нефтяных скважинах был создан передвижной комплекс наземного и погружного оборудования, основными элементами которого были струйный насос с гидромониторной насадкой и двухрядный лифт. Методика расчета струйного насоса для размыва песчаной пробки и подъема пульпы разработана З.С.Помазковой на основе эмпирических зависимостей, справедливых только для одного соотношения давлений РР и Рн соответственно рабочей и инжектируемой жидкостей на входе в струйный насос (РР/Рн=26,3). Указанное соотношение имело место при проведении работ в большинстве пес-кообразующих скважин, поэтому методика расчета удовлетворяла требованиям практики [1]. Необходимо отметить, что проблема выноса твердой фазы из скважины с помощью струйных насосов является актуальной и в настоящее время.

В 1968 году в МИНХ и ГП им. И.М.Губкина И.Т.Мищенко предложена схема тандемной установки "УЭЦН + струйный насос", предназначенная для повышения эффективности и оптимизации подъема жидкости за счет максимального использования энергии газа [2].

В конце 70-х годов в институте "Гипротюменнефтегаз" под руководством Ю.А.Цепляева начались работы по исследованию возможностей применения струйных аппаратов для эксплуатации нефтяных скважин [3,4,5,6]. Первые . промысловые испытания водоструйных насосов, проведенные в 1969-1971 г.г. на месторождениях Западной Сибири (на 4-х нефтяных скважинах), показали принципиальную возможность осуществления поставленной цели. В 1973-74 г.г. развернулось широкое внедрение водоструйных насосов конструкции "Гипротюменнефтегаза", предназначенных для подъема воды из водяных скважин для нужд системы поддержания пластового давления (ППД). Струйные насосы, установленные на сравнительно небольших глубинах - порядка 250 430 м - работали с коэффициентом инжек-ции U= 6-=-8 и межремонтным периодом 7 8 месяцев, обеспечивая среднесуточный отбор на одну скважину порядка 2800-4000 м3/сут. В качестве рабочего агента использовалась вода высокого давления из системы ППД.

•В 1974 г. в НГДУ "Юганскнефть" испытана установка струйного насоса с глубинным приводом, в качестве которого использовался ЭЦН. Испытания показали высокую эффективность указанной установки для подъема жидкости из высокодебитных нефтяных скважин. Одновременно в "Гипротю-меннефтегаз" велись работы по созданию наземных индивидуальных силовых установок, предназначенных для привода одного или нескольких струйных насосов с использованием в качестве рабочего агента добываемой жидкости.

В результате предварительных промысловых испытаний указанной установки, проведенных в 1979-1981 г.г. на Усть-Балыкском месторождении, получен значительный межремонтный период работы (570 суток) при отсутствии постоянного обслуживающего персонала.

Методика расчета Ю.А.Цепляева, разработанная на основе теории П.Н.Каменева, впервые в СССР позволила достаточно надежно проектировать струйные установки для различных условий эксплуатации скважин при отсутствии газовой фазы в рабочей и инжектируемой жидкостях.

В начале 80-х годов в МИНХ и ГП им. И.М.Губкина И.Т.Мищенко и С.Д.Мироновым проведены теоретические и экспериментальные исследования работоспособности струйных аппаратов при,инжектировании газожидкостных и трехфазных (в присутствии твердой фазы) смесей, а также высоковязких жидкостей [7,8 ]. Установлены границы вязкости инжектируемой жидкости, при которой характеристика струйного аппарата остается неизменной, а также предельная вязкость, при которой процесс инжектирования еще возможен (примерно 11 Па-с при использовании воды в качестве рабочей жидкости).

Получена эмпирическая зависимость для определения коэффициента инжекции струйного аппарата по жидкости при инжектировании газожидкостных смесей, надежно подтверждающаяся во всем диапазоне газосодержания инжектируемой среды. На ее основе с применением теории Е.Я.Соколова- Н.М.Зингера И.Т.Мищенко получено уравнение характеристики струйных аппаратов, перекачивающих как газожидкостные смеси, так и смеси с твердой фазой [9].

В начале 90-х годов в ЦНИЛ "Укрнефть" под руководством В.П.Марь-енко проведен комплекс работ, включающий проектирование погружного оборудования струйных установок, стендовые испытания струйных насосов и их промышленное использование на 25 скважинах различных месторождений Украины. В качестве рабочего агента использовались вода высокого давления из системы поддержания пластового давления, а также газ высокого давления из системы газлифта. Методика расчета струйных аппаратов Марьенко В.П. представляет собой симбиоз теорий Е.Я.Соколова Н.М.Зингера и Л.Г.Подвидза - Л.Г.Кириловского и содержит зависимости для расчета коэффициентов скорости камеры смешения и диффузора, которые ранее задавались ориентировочно на основе результатов стендовых испытаний [10,11].

•В этот же период в Ивано-Франковском институте нефти и газа под руководством Р.С.Яремийчука разрабатывались оборудование и технологии для освоения скважин и отработок призабойной зоны с применением струйных насосов, которые получили определенное распространение на месторождениях СССР. Для расчета струйных насосов использовалась теория Е.Я.Соколова - Н.М. Зингера [12].

В настоящее время в ГАНГ им. И.М.Губкина под руководством И.Т.Мищенко продолжаются работы по совершенствованию тандемных установок типа "УЭЦН + струйный насос" и технологии их применения для эксплуатации скважин, выходящих из бурения, или скважин, которые плохо осваиваются после подземного (капитального) ремонта [13,14]. Фирма "Инжектор" совместно с ДАООТ "Нижневартовскнефть" под научным руководством И.Т.Мищенко применяет тандемные установки для форсированного отбора жидкости, а также струйные насосные установки с наземным приводом для подъема жидкости из скважин в осложненных условиях эксплуатации (низкие динамические уровни, высокий газовый фактор, наличие мехпримесей в добываемой жидкости, гидратообразование) [15,16]. В качестве рабочего агента для струйных насосных установок используется вода высокого давления из системы поддержания пластового давления.

В США первая публикация о применении струйных насосов для подъема жидкости из нефтяных скважин появилась в 1933 году, однако первые испытания проведены лишь в 1970 году на 5 скважинах в Техасе компанией Kobe Inc. [21]. В двух из них в качестве рабочей жидкости использова лась нефть, в остальных трех - вода. Глубина спуска струйных насосов при этом была в диапазоне от 580 до 2900 метров, а добыча жидкости составляла от 13 до 160 м3/сут. К 1975 году в скважинах уже работало около 200 струйных насосов.

В настоящее время фирмы США применяют струйные насосы при опробовании пластов и освоении скважин ("Trico Industries"), при добыче нефти с высоким газовым фактором и мехпримесями ("Trico Industries", "Dresser Industries", "National Supplay" и др.) [22], при эксплуатации горизонтальных скважин с применением непрерывной колонны труб ("Jet Production Systems") для подъема тяжелых нефтей на морских месторождениях [23], для эксплуатации отдаленных скважин с большим содержанием сероводорода в продукции, для очистки скважин от песчаных пробок ("Nowsco")[24]. Фирма "Tenneco Oil" на месторождении Мэйн Пасс перешла с газлифтного способа эксплуатации на струйные насосы, после того как началось обводнение продукции. Это позволило увеличить депрессию на пласт свыше 2,4 МПа, увеличить отборы жидкости по скважине до 320 м /сут, что не удавалось при газлифтном способе эксплуатации из-за низкого пластового давления и большого искривления скважин [25].

Для эксплуатации отдаленных месторождений, где отсутствуют дороги, линии энергопередач и возможности осуществления бескомпрессорного газлифта, успешно применяются струйные установки. В этом случае приводом силовых наземных насосов служат газовые двигатели, работающие на попутном газе, поступающем из эксплуатируемых скважин. Так, например, для подъема 150 м3/сут суммарного объема жидкости из 10 скважин, эксплуатируемых струйными установками с групповым приводом, требуется при мерно 2200 м3/сут газа с теплотворной способностью 42,6 МДж/м3. Это обеспечит работу двух газовых двигателей мощностью 186,5 кВт, а средняя высота подъема жидкости при этом составляет 1000 м [26].

Наземное оборудование струйных установок выпускается как для одной скважины (индивидуальный привод), так и для группы (куста) скважин (групповой привод) и содержит, как правило, блок силовых насосов, емкость для рабочей жидкости и гидроциклонный аппарат для очистки рабочей жидкости от мехпримесей. Сепарация газа из добываемой жидкости происходит либо в специальной сепарационной емкости (установка "Есо-nodraulic" фирмы Dresser Industries) [27], либо в емкости, совмещающей функции газосепаратора и хранилища рабочей жидкости (установка "Tri-codraulic") [28]. В последнем случае в компоновку наземного оборудования входит подпорный насос, который производит рециркуляцию очищенной рабочей жидкости через гидроциклон.

Погружное оборудование содержит стационарный или вставной струйный насос, однорядную колонну труб с пакером или двухрядный лифт (с параллельной или концентричной подвеской труб).

Устье скважины оборудуется 4-х ходовым клапаном, позволяющим менять схему циркуляции рабочей жидкости в скважине при спуске или подъеме вставного струйного насоса.

Компания "Trico Industries" предлагает также устройства, регулирующие расход и давление воды, предназначенной для заводнения пластов, с тем, чтобы использовать ее в качестве рабочего агента для струйных насосов [28].

В настоящей работе рассматриваются вопросы теории струйных аппаратов, перекачивающих газожидкостные смеси. Приводятся методики расчета скважинных тандемных установок типа "УЭЦН + струйный насос", выполненные с учетом изменяющихся физических свойств флюидов. Рассмотрены варианты конструкций вставных струйных насосов для тандемнои установки и струйной насосной установки с наземным приводом, а также основные особенности их эксплуатации. Проведен анализ технологической эффективности применения тандемных установок, а также выполнена экономическая оценка применения струйных насосных установок с наземным приводом для двух вариантов комплектации оборудования с одинаковыми рабочими характеристиками, но различной стоимостью.

Похожие диссертации на Особенности эксплуатации добывающих скважин струйными насосными установками