Введение к работе
Актуальность темы диссертации. Проблема разработки эффективных теплообменных аппаратов актуальна для любой сферы народного хозяйства - в промышленной энергетике, ЖКХ, транспортной, химической и др. отраслях.
Для улучшения характеристик теплоэнергетического оборудования необходимо разрабатывать новые конструкции теплообменных аппаратов, увеличивать эффективность теплообменных поверхностей, применять современные подходы к проектированию теплообменных аппаратов, создавать новые технологии их производства. Правильный выбор теплообменников и их теплообменных поверхностей представляется исключительно важной и актуальной задачей.
В промышленной теплоэнергетике наиболее распространены пластинчатые и кожухотрубчатые теплообменники. Поверхностные интенсификаторы (шероховатость, выступы, и т.д.), которые в них используются при заметном увеличении коэффициента теплоотдачи ведут (за редкими исключениями) к более заметному росту коэффициенту сопротивления (т.е. росту перепада давления и, как следствие, росту мощности на прокачку). Повышение тепловой эффективности теплообмена на 30-40% ведет к росту сопротивления на 40-60%. В то же время такой способ интенсификации как нанесение поверхностных сферических углублений (лунок) выделяется заметным ростом коэффициента теплоотдачи, опережающим увеличение коэффициента сопротивления.
Вихревые способы интенсификации теплообмена, к которым относятся сферические лунки, является одним из самых перспективных, поскольку при его реализации возможен опережающий рост относительного коэффициента теплоотдачи по сравнению с ростом относительного коэффициента сопротивления.
Актуальность работы определяется также тем, что все ранее опубликованные работы по исследованию этого способа интенсификации выполнены либо для обтекания пластины (либо для канала с большой высотой), либо для очень узкого канала (с уже развитым режимом течения), поэтому в данной работе, в первую очередь, исследуются тепловые и гидродинамические характеристики при изменении высоты канала, а также оценивается влияние этого способа интенсификации на характеристики пластинчатых и кожухотрубных теплообменников и выявляется влияние различных факторов, таких как: высота канала, степень турбулентности набегающего потока, расположение лунок, их глубина, продольное или поперечное обтекание теплообменной поверхности.
Часть исследований, которые вошли в диссертацию были выполнены в рамках гранта РФФИ № 05-08-18265.
Целью работы является разработка метода расчета теплообменников промышленной теплоэнергетики (пластинчатых и трубчатых) в части локальных характеристик, коэффициентов теплоотдачи и оценка повышения их эффективности при нанесении полусферических лунок на теплопередающую поверхность. Для этого необходимо решить следующие задачи:
-
Провести экспериментальные исследования, состоящие из следующих частей:
Исследование теплообмена в каналах с лунками на нижней поверхности методом регулярного теплового режима с использованием тепловизионной аппаратуры;
Исследование структуры вихревых выносов из лунок в канале при различной его высоте методом дымовой визуализации.
Определение потерь давления традиционными средствами измерения;
-
Проведение численного исследования каналов с лунками на нижней поверхности для оценки их влияния на теплообмен и гидравлическое сопротивление. Сравнение полученных данных с результатами экспериментальных исследований.
-
Проведение расчетов сопряженной задачи для модели рабочего участка при развитом режиме течения и учете влияния начального участка c целью апробирования метода расчета локальных характеристик в канале с лунками;
-
Получение обобщающих соотношений и проведение расчетов для двух типов теплообменных аппаратов, определение количественных данных по повышению их эффективности.
Научная новизна:
-
Впервые определено влияние таких факторов как степень турбулентности набегающего потока, высота канала, расположение и параметры лунок, а так же направление обтекания теплообменной поверхности на относительные коэффициенты теплоотдачи и гидродинамики. Это позволило установить зависимости для расчета относительных чисел Нуссельта и коэффициентов сопротивления, как для плоского канала, так и для поперечного обтекания трубы с лунками на её поверхности.
2. Адаптирован метод регулярного режима с помощью тепловизора ИРТИС-200 для поверхности с лунками и получены количественные результаты по коэффициентам Нуссельта с использованием этого метода при турбулентном режиме течения.
3. На основании проведенных экспериментальных визуальных данных и проведенных расчётов проанализирован механизм интенсификации теплообмена, заключающийся в образовании больших вихрей выносимых из области лунок в набегающий поток, которые могут приводить к увеличению коэффициента теплоотдачи.
4. Проведены расчёты сопряженной задачи и выявлено влияние материала пластины на распределение температуры на характеристики в канале с лунками.
-
Уточнены значения коэффициентов в пристенных функциях, с помощью которых можно находить значения коэффициентов теплообмена по локальным значениям температур при использовании вычислительного комплекса PHOENICS.
-
Показан эффект при использовании поверхностей с углублениями на примерах пластинчатых теплообменниках, используемых в жилищно-коммунальном хозяйстве (ЖКХ) и трубчатых рекуператорах, используемых в схемах высокотемпературных установок (ВТУ) при проведении процессов плавления и варки стекла, что позволяет сэкономить металл при неизменном расходе топлива, либо при той же металлоёмкости аппарата сократить расход топлива.
Достоверность подтверждается удовлетворительной согласованностью расчётных и экспериментальных данных, применением современных экспериментальных методик и вычислительного комплекса PHOENICS, а также удовлетворительным согласием результатов исследования с результатами других авторов.
Практическая ценность. Полученные в работе критериальные выражения удовлетворяют по точности инженерным требованиям и позволяют производить расчеты теплогидравлических параметров в пластинчатых теплообменниках ЖКХ, не прибегая к затратным экспериментальным методам. Предложены мероприятия по экономии природного газа в трубчатых рекуператорах, используемых при проведении плавильных процессов в схемах плавления и варки стекла, которые могут быть частично или полностью реализованы в других отраслях промышленности. Результаты работы используются при чтении курсов «Тепломассообменное оборудование промышленных предприятий» и «Математическое моделирование и оптимизация систем теплоснабжения и кондиционирования».
Основные положения, выносимые на защиту:
результаты экспериментального исследования теплоотдачи, гидравлического сопротивления и структуры потока в каналах разной высоты;
результаты численного моделирования турбулентного течения и теплопереноса в каналах теплообменников с интенсифицированными поверхностями и расчеты сопряженной задачи на модели рабочего участка при развитом режиме течения и учете влияния начального участка c целью апробирования метода расчета локальных характеристик в канале с лунками;
зависимости для расчета теплопереноса и гидравлических потерь в исследуемых теплообменниках;
мероприятия по повышению эффективности теплообменного оборудования на базе проведенного исследования и оценка энерго- и ресурсосберегающего эффекта.
Апробация работы. Основные положения работы, результаты теоретических, численных и экспериментальных исследований докладывались и обсуждались на II научной школе-конференции “Актуальные вопросы авиационных и аэрокосмических систем. Процессы, модели, эксперимент” НАН Украины в 2004 году; IV национальной конференции по теплообмену в 2006 году; III Международной конференции «Тепломассообмен и гидродинамика в закрученных потоках в 2008 году» и XVI международной научно-технической конференции студентов и аспирантов «Радиоэлектроника, электротехника и энергетика» в 2010 год.
Публикации. Основные результаты диссертационной работы изложены в 7 опубликованных работах, две из них в изданиях рекомендованных ВАК. Список указанных работ приведен на последней странице автореферата.
Структура и объём работы. Диссертация состоит из введения, четырех глав, выводов, списка литературы, состоящего из 85 наименований, и приложения. Общий объём диссертации составляет 135 страниц, включая рисунки, таблицы и приложения.