Содержание к диссертации
Введение
Глава 1. Особенности эксплуатации пожарных автоцистерн в объектовых пожарных частях 11
1.1 Территориальные и объектовые подразделения пожарной охраны 11
1.2 Климатические условия Чувашии 14
1.3 Влияние низких температур на оперативную обстановку с пожарами и техническую готовность пожарных автоцистерн 19
1.4 Режимы эксплуатации пожарных автоцистерн в ОАО "Химпром" 35
1.5 Способы тепловой подготовки автотранспортных средств 45
1.6 Обеспечение технической готовности АЦ объектовых ПЧ 45
1.7 Обоснование цели и задач исследования 46
Глава 2. Аналитическое исследование способов поддержания рациональной температуры элементов АЦ 68
2.1 Тепловая защита элементов АЦ 68
2.2 Системы поддержания рациональных температур элементов АЦ 69
2.3 Рациональные и предельно допустимые температуры элементов АЦ 73
2.4 Способы тепловой подготовки элементов АЦ 80
2.5 Математическая модель процесса теплообмена при тепловой подготовке двигателя АЦ 83
2.6 Теоретически необходимые энергозатраты для поддержания рациональной температуры блока двигателя 93
2.7 Математическая модель естественного охлаждения и прогрева огнету- шащих веществ в автоцистерне 100
2.8 Расчет параметров систем тепловой защиты элементов АЦ 125
2.9 Оценка эффективности средств тепловой подготовки и тепловой защиты элементов АЦ 130
Глава 3. Методика исследования 141
3.1 Методика проведения экспериментальных исследований 141
3.2 Методика разработки технологии нанесения теплоизоляции 157
3.3 Методика исследования процессов охлаждения элементов АЦ 162
Глава 4. Результаты экспериментов 168
4.1 Общие положения 168
4.2 Исследование способов тепловой подготовки двигателя АЦ 168
4.3 Тепловая подготовка элементов силового агрегата АЦ 174
4.4 Энергетическая эффективность способов и средств тепловой подготовки элементов силового агрегата АЦ 195
4.5 Анализ следования АЦ по вызову 199
4.6 Тепловое состояние элементов АЦ в условиях низких температур 204
4.7 Эффективность способов тепловой подготовки элементов АЦ 225
4.8 Эффективность средств тепловой защиты элементов АЦ 229
4.9 Активная тепловая защита напорных рукавных линий 247
Глава 5. Экономическая оценка результатов работы 248
Выводы 265
Литература 268
Приложение. 277
- Влияние низких температур на оперативную обстановку с пожарами и техническую готовность пожарных автоцистерн
- Системы поддержания рациональных температур элементов АЦ
- Методика исследования процессов охлаждения элементов АЦ
- Энергетическая эффективность способов и средств тепловой подготовки элементов силового агрегата АЦ
Введение к работе
Государственная противопожарная служба (ГПС) входит в состав Министерства внутренних дел Российской Федерации в качестве самостоятельной оперативной службы. Подразделения ГПС обеспечивают организацию предупреждения и тушения пожаров и делятся на две группы: территориальные и объектовые. Территориальные подразделения осуществляют свои функции в городах и населенных пунктах. Объектовые подразделения ГПС создаются на крупных предприятиях различных отраслей промышленности, энергетики, культурно - просветительных учреждений и т. д.
На протяжении последних десятилетий особенности организации и функционирования территориальных подразделений ГПС интенсивно исследовались. Их результаты изложены в ряде диссертационных работ и публикаций [22, 23, 32, 94]. В течение этого периода были выполнены многочисленные исследования по эксплуатации пожарной техники. По этому направлению опубликованы монографии [47, 49, 64, 108, 109, 110, 111] и выполнены диссертационные работы [4, 21,43,69, 103, 104].
Результаты указанных трудов позволили, во-первых, обосновать проблемы по совершенствованию деятельности подразделений ГПС. Важным, во- вторых, стало дальнейшее совершенствование эксплуатации пожарных машин, повышение надежности их работы, обеспечение боевой готовности. В-третьих,на основании ряда работ [3, 4, 5, 95, 109 и др.] было показано, что в области пожаротушения и эксплуатации пожарной техники, наиболее тяжелыми, являются условия при низких температурах, т.е. зимой.
Основные выводы из многочисленных литературных источников по эксплуатации пожарных автомобилей (ПА) сводятся к следующему. Наиболее сложная оперативная обстановка с пожарами складывается в зимних условиях. В этот период по сравнению с другими периодами, происходит наибольшее количество пожаров. Продолжительность их тушения также наибольшая.
При низких температурах увеличивается время следования ПА на пожары, ускоряется износ элементов, увеличивается расход топлива, что обусловлено ухудшением условий дорожного движения, а также пониженной скоростью прогрева силового агрегата и масла в трансмиссии, что не позволяет в первые минуты движения обеспечить подведение к ведущим колесам полной мощности.
Тушение затяжных и крупных пожаров сопровождается значительным ухудшением условий подачи воды вследствие образования льда на внутренних поверхностях рукавной арматуры и стволов. В этих условиях случается замерзание воды в полостях пожарных центробежных насосов. Значительные трудности обнаруживаются при разборке рукавных линий после тушения пожаров.
Особенности эксплуатации ПА в условиях низких температур учитываются в соответствующих нормативных документах. Для регионов России с длительными периодами эксплуатации ПА в условиях низких температур уменьшены нормативы пробегов АЦ между техническим обслуживанием, снижены величины пробегов ПА до капитального ремонта, увеличена нормативная трудоемкость выполнения работ по техническому обслуживанию № 2, текущему и капитальному ремонту [86]. Эти особенности учтены также в Концепции развития производства пожарных автомобилей в РФ, где записано: "разработать и организовать производство ПА, ориентированные на эксплуатацию в холодных климатических условиях РФ", (п. 20.2, стр. 12).
Сформулированные выводы сделаны, как было указано, на основании обобщения и исследований функционирования территориальных подразделений ГПС. К сожалению, никем не исследовались особенности эксплуатации ПА объектовых пожарных частей (ОПЧ) и обеспечения их технической готовности и работоспособности в зимний период. Основу парка пожарных автомобилей ОПЧ составляют пожарные автоцистерны (АЦ). Они составляют свыше 70% парка основных ПА в подразделениях Первого управлений ГУ ГПС МВД РФ [74]. В связи с этим изучение особенностей эксплуатации АЦ в ОПЧ в зимний период является актуальной задачей.
Техническая готовность и работоспособность АЦ определяется рядом факторов. Первой группой из них, является заложенный в конструкцию узлов, агрегатов и механизмов уровень качества, определяющий в свою очередь надежность их работы. Эта группа факторов имеет государственное значение, ей всегда придавалось особое значение [38, 60, 64, 71, 77].
Второй группой факторов, в значительной мере влияющей на другие, является приспособленность базовых агрегатов, специальных узлов и механизмов, пожарно-технического оборудования АЦ к особенностям эксплуатации при экстремальных значениях параметров окружающей среды. Эти вопросы рассмотрены в работах [3, 5, 15, 21, 42, 43, 69, 109].
Третьей группой факторов является квалификация и опыт личного состава, эксплуатирующего машины. В ГПС это находит отражение в уставах и наставлениях, приказах МВД [19, 84, 85, 86, 87, 88].
Пожары на объектах различных отраслей промышленности могут носить затяжной характер и превращаться в крупные пожары, тушение которых длится многие часы. При этом фактор времени оперативного реагирования подразделений ГПС на вызовы является решающим в снижении, как числа человеческих жертв, так и размера материального ущерба от пожаров. Количество пожаров в регионах, обслуживаемых территориальными подразделениями ГПС в последние годы находятся на уровне 270...310 тысяч в год. Крупные же пожары составляют от этого количества 0,04...0,4 %, ущерб же от них достигает 10...17% [96]. Для недопущения перерастания ординарных пожаров (аварий) в крупные пожары или катастрофы на пожаро - взрывооопасных объектах необходимо обеспечивать высокую мобильность, постоянную техническую готовность и работоспособность АЦ при любых погодных условиях.
Цель диссертационной работы - изучение особенностей эксплуатации АЦ в объектовых пожарных частях для обоснования путей обеспечения их технической готовности и работоспособности в условиях низких температур. Для реализации поставленной цели были сформулированы следующие задачи:
- на примере объектовых пожарных частей ОАО "Химпром" изучить особенности эксплуатации АЦ в зимний период;
- создать подвижную экспериментальную установку на базе АЦ для оценки теплового состояния силового агрегата и вывозимых огнетушащих веществ;
- аналитически и экспериментально исследовать изменение теплового состояния силового агрегата, при тепловой подготовке в условиях гаража пожарного депо и огнетушащих веществ - в период внегаражного пребывания АЦ;
- обосновать рациональные значения начального теплового состояния силового агрегата АЦ и предельные значения теплового состояния огнетушащих веществ в условиях низких температур;
- аналитически обосновать и экспериментально подтвердить энергозатраты на поддержание рациональных значений температур силового агрегата и огнетушащих веществ АЦ;
- обосновать возможные пути повышения технической готовности и работоспособности АЦ объектовых пожарных частей в зимний период эксплуатации, а также параметры систем обеспечения рациональных тепловых режимов элементов силового агрегата и огнетушащих веществ специальной АЦ для объектовых ПЧ.
Объекты исследования - силовой агрегат, огнетушащие вещества в цистерне и пенобаке АЦ, отсек с СИЗОД.
Предмет исследования - оценка влияния теплового состояния силового агрегата, огнетушащих веществ в цистерне и пенобаке на техническую готовность АЦ и ее работоспособность в условиях низких температур.
Методы исследований - математическое моделирование, экспериментальные исследования, лабораторные опыты и натурные испытания.
Научная новизна диссертации состоит в том, что впервые:
- проанализированы особенности дежурства АЦ в ОПЧ;
- обоснован способ подогрева и рациональные схемы размещения электрических подогревателей элементов силового агрегата АЦ;
- экспериментально подтверждена целесообразность поддержания в условиях гаража температуры охлаждающей жидкости и моторного масла в картере двигателя + 50°С, масла в коробке перемены передач (КПП) +40°С;
- определены мощности электрических подогревателей, необходимые для локальной тепловой подготовки силового агрегата и огнетушащих веществ в условиях гаража, а также параметры систем активной и пассивной тепловой защиты элементов, обеспечивающие неограниченную хладоустойчивостъ емкостей с огнетушащими веществами и модуля со средствами индивидуальной защиты органов дыхания (СИЗОД), в период внегаражного пребывания АЦ;
- теоретически обоснованы и экспериментально проверены способы и средства локальной тепловой подготовки элементов АЦ в режиме ожидания, а также систем активной и пассивной тепловой защиты хладочувствительных элементов АЦ в условиях низких температур.
Достоверность результатов и выводов обеспечивается: их широкой экспериментальной проверкой в лабораторных и натурных испытаниях, включая эксперименты по оценке эффективности систем активной и пассивной тепловой защиты элементов АЦ; использованием методов аналитического описания процессов с сопоставлением результатов с фундаментальными зависимостями известными в литературе и полученных другими методами и авторами; оснащением современной аппаратурой экспериментальной подвижной испытательной установки на базе АЦ в период нахождения ее в боевом расчете пожарной части; адекватностью результатов математического моделирования и экспериментальных данных; апробацией материалов исследования подтвержденных актами практической реализации.
Практическая значимость диссертации состоит в следующем:
- обоснованы и выбраны энергоэффективные способы и средства тепловой подготовки элементов АЦ в условиях гаража;
- определены температурные и временные границы хладоустойчивости элементов АЦ-40(130)63Б и АЦ-40(433104)001 при низких температурах, которые отражены в соответствующих номограммах и таблицах.
- установлена возможность увеличения на 20...25% средней скорости движения АЦ, при движении на пожар в условиях низких температур;
- разработаны и испытаны средства тепловой защиты ОТВ и СИЗОД специальной АЦ, приспособленной для работы в условиях низких температур.
Практическую ценность имеют:
- разработанные технологические основы тепловой подготовки АЦ в условиях гаража, средства локального электрического подогрева элементов АЦ, а также системы электрического питания, коммутации и защиты, реализованные в устройствах размещенных на АЦ.
- разработанные активные и пассивные средства тепловой защиты элементов АЦ.
- установка для проверки герметичности внутренней полости пожарного насоса АЦ, при помощи специального устройства с воздушным струйным вакуумным насосом.
- способ активной тепловой защиты рукавных линий за счет подпитки общего потока подогретой водой из цистерны АЦ;
- устройство (МП - 80), позволяющее производить автоматическое, за счет разности давлений в питающих линиях, переключение рукавных линий, благодаря чему обеспечивается непрерывная подача огнетушащих веществ к пожарным стволам;
- обоснование основных подходов, позволяющих ускорить разработку основной АЦ общего применения для объектовых пожарных частей и других специальных автомобилей, приспособленных для работы в условиях низких температур.
Результаты работы могут быть использованы для аналитической оценки значений разовой и циклической хладоустойчивости автофургонов, автоцистерн, железнодорожных, речных, морских, авиа танк - контейнеров, повышения технической готовности и хладоустойчивости транспортных средств специального назначения. Разработанные технологии огнезащиты пенополиуретана (а также пе- нополистирола, карбамидо и фенол - формальдегидных пенопластов) алюмоси- ликатным покрытием "Силофор", позволяют существенно увеличивать огнеус- тойчивость теплоизоляционных конструкций транспортных средств и в строительстве.
Апробация и практическая реализация работы. Основные результаты и положения диссертационной работы были представлены и обсуждены на Всероссийской научно - практической конференции по проблемам пожарной безопасности в 1999 г., IV Международной конференции "Полимерные материалы пониженной горючести" г. Волгоград 17-19 октября 2000 г., факультете охраны труда Нишского госуниверситета на Международной научно - практической конференции охраны труда в 2000 г., научных семинарах кафедр Академии ГПС МВД России, г. Москва и Чувашского госуниверситета, г. Чебоксары. Материалы исследований используются в учебном процессе Академии ГПС МВД РФ по дисциплине "Пожарная техника", а также на занятиях по служебной подготовке в гарнизоне пожарной охраны Чувашской Республики.
Публикации. Основное содержание работы опубликовано в 6 печатных работах.
Объем работы. Диссертация состоит из введения, пяти глав, списка литературы и приложения. Работа без приложения содержит 276 страниц машинописного текста, иллюстрированных 93 рисунками и 36 таблицами. В библиографии приведены 111 литературных источников.
На защиту выносятся результаты:
- экспериментального изучения процессов тепловой подготовки силового агрегата, емкостей с огнетушащими веществами АЦ в условиях гаража;
- аналитического описания теплофизических процессов тепловой подготовки АЦ в гараже, а также тепловой защиты ОТВ и СИЗОД в период внегараж- ного пребывания АЦ в условиях низких температур;
- лабораторных и полигонных экспериментов по исследованию теплового состояния элементов АЦ;
- оценки эффективности способов и средств тепловой подготовки элементов АЦ в условиях гаража, а также средств обеспечения тепловой защиты элементов в период внегаражного пребывания АЦ в условиях низких температур;
Работа выполнена на кафедре пожарной техники Академии ГПС МВД России в период с 1986 по 2001 годы.
Влияние низких температур на оперативную обстановку с пожарами и техническую готовность пожарных автоцистерн
Перечисленные выше климатические особенности зимнего периода сказываются на возможности реализации технических характеристик эксплуатируемых пожарных машин. Воздействие низких температур, и влажности на элементы пожарных автомобилей учитывается при определении норм пробега до капитального ремонта и эксплуатационных расходов [86].
Влияние геофизических факторов на обстановку с пожарами в административно - территориальных образованиях (ATO) России исследовано в работе [104]. Исследования показали, что состояние обстановки с пожарами в определенной степени зависит от географического расположения ATO и, соответственно от климатических условий региона. В работе выявлена тенденция роста значений показателей обстановки с пожарами в зимний период по Европейской части России, а также для Сибири и Дальнего Востока. Граница высокого и повышенного уровней состояния обстановки с пожарами, особенно в наиболее холодный месяц - январь, значительно смещается с севера на юг, что наиболее сказывается в отношении такого показателя, как количество людей, погибших при пожарах.
Некоторые особенности эксплуатации пожарных автомобилей и тушения пожаров в условиях низких отрицательных температур, характерных для климатических условий городов Перми (регион, согласно [86], с умеренно холодным климатом и Иркутска, с холодным климатом), были рассмотрены в диссертационной работе Алешкова М. В.[4]. В этой работе на основании изучения статистических данных о тушении 1200 крупных пожаров было установлено, что не смотря на большие различия в климатических условиях сравниваемых городов, наибольшее количество пожаров, в вышеуказанных гарнизонах пожарной охраны, приходится на зимний период.
Из опыта тушения пожаров зимой и результатов исследований [4] установлено, что в период тушения пожара, при температуре воздуха ниже - 25С, через 1,5 часа в 2 - 3 раза может уменьшится подача воды из-за обледенения внутренних поверхностей соединительных рукавных головок, разветвлений и стволов. При низких температурах наружного воздуха увеличивается количество отказов в работе специальных механизмов, пожарно-технического оборудования, что приводит к увеличению времени тушения пожаров. Следовательно, температура наружного воздуха и скорость ветра в зимний период, оказывают наибольшее влияние на техническое состояние АЦ, продолжительность тушения пожаров и величину ущерба от них.
Подавляющее большинство эксплуатируемых в России АЦ, приспособлены для работы в интервале температур окружающей среды от - 35...40 до + 35...40С п. 6.1.11.1 [71, 110]. Однако, как показывает практика, это относится скорее к элементам базовых шасси, но не к размещенному на автомобилях по- жарно - техническому оборудованию (ПТО) и огнетушащим веществам (ОТВ). Свыше 70% парка основных пожарных автомобилей объектовых ПЧ составляют АЦ [74]. У АЦ наиболее сильно подвержены воздействию низких температур вода в цистернах, пенообразователь в баках, отсеки с ПТВ, средствами индивидуальной защиты органов дыхания (СИЗОД), пожарными рукавами, а также пожарный насос и система его вакуумирования.
Работы по использованию тепловой защиты отдельных элементов АЦ на шасси "Урал" и "ЗИЛ" проводятся в настоящее время на предприятии "Урал АЗ- Пожтех", а также ВНИИПО совместно с автозаводом в г. Варгашоры.
Согласно п. 6.1.6.13 [71] "средства индивидуальной защиты органов дыхания (СИЗОД) и запасные баллоны к ним должны хранится в отсеках (контейнерах), предохраняющих их от повреждений и загрязнения. Должны быть приняты меры, обеспечивающие поддержание в отсеке положительной температуры во всем диапазоне условий эксплуатации". Однако, например в АЦ - 40(130)63Б недостаточно места для размещения СИЗОД в кабине боевого расчета, а в кабине боевого расчета АЦ - 40(433104)001 -ММ можно разместить, не более 4 приборов. Остальные (в том числе резервные) средства индивидуальной защиты органов дыхания (СИЗОД), а также резервный запас кислородных баллонов (КБ), регенеративных патронов (РП) вывозятся, как правило, в ячейках специального ящика, установленного в необогреваемом отсеке пожарного автомобиля. В Чебоксарском гарнизоне пожарной охраны, более 95% СИЗОД размещаются в отсеках пожарных автомобилей в ящиках с ячейками, при этом ящики не имеют крышек и нетеплоизолированы. При длительном нахождении АЦ во вне- гаражных условиях зимой, температура СИЗОД, патронов с химическим поглотителем, баллонов со сжатым кислородом (воздухом) становится близка к температуре наружного воздуха. Это может привести к сокращению времени защитного действия приборов или даже к отказу в их работе [88]. В связи с этим важное значение имеет поиск способов сохранения рабочих температур СИЗОД при длительном нахождении АЦ в условиях низких температур.
Пожарные рукава и рукавная арматура, размещённые в необогреваемых отсеках, также могут охладится практически до температуры наружного воздуха. В начальный период тушения пожара вода подается в пожарный насос, напорные рукава, рукавную арматуру, температура стенок которых, близка температуре окружающего воздуха. Движущаяся по ним вода охлаждается, в ней образуются кристаллы льда, способные закупорить рукавную арматуру и стволы [4, 99].
Согласно п. 6.1.4.5. [71] "При заднем расположении насоса должен быть предусмотрен обогрев насосного отсека для нормальной работы насосной установки при отрицательных температурах воздуха, установленных для конкретного ПА. Аналогичные условия должны быть обеспечены и для ствола - распылителя высокого давления и рукавной катушки." Поэтому необходимы исследования по поиску эффективных способов длительного сохранения положительных температур пожарно - технического оборудования в период нахождения АЦ зимой во внегаражных условиях.
Для успешного тушения пожара, иногда необходимо обеспечивать подачу огнетушащих веществ, в течении нескольких часов по рукавным линиям на значительные расстояния. Наиболее часто встречающийся способы предупреждения обледенения арматуры рукавных линий - это использование паяльных ламп (факелов) для отогрева рукавной арматуры или специальных водоподогревающих вставок, утепление разветвлений и рукавных соединений снегом, а при возможности, подвоз горячей воды [4, 45].
В настоящее время только на автоцистернах северного исполнения предусматривается подогрев воды перед подачей её в рукавную линию. Эти пожарные автомобили АЦ -40/3(131С)153А и АЦ - 40(131С) 153 имеют утепленную цистерну с водой и бак с пенообразователем, а так же установку на жидком топливе для подогрева воды. Однако установка подогрева позволяет только через 45 - 60 минут работы начать подпитку рукавных линий теплой водой из цистерны, с подогревом общего потока до 3С [111].
Системы поддержания рациональных температур элементов АЦ
Для сохранения рабочих параметров элементов АЦ, при воздействии неблагоприятных температурных факторов окружающей среды, возникает необходимость в использовании систем тепловой защиты.
Применение пассивной тепловой защиты позволяет уменьшить величину теплового потока проходящего через ограждающую поверхность элемента, и тем самым, увеличивать временной интервал до достижения элементом значений критических температур - т. е. для повышения тепло - хладоустойчивости. Повышение сопротивления теплопередаче между ограждающей поверхностью элементов и окружающей средой достигается за счет использования дополнительной теплоизоляции, экранов, воздушных прослоек и т. д.
Активная тепловая защита элементов АЦ, при тепловом воздействии окружающей среды, осуществляется за счет отвода или подвода к ним тепловой энергии. Если мощность теплоотводящей или теплоподводящей системы достаточна для стабилизации температуры объекта при значениях, не превышающих его предельно допустимые значения или тепло - хладостойкость [60], то обеспечивается неограниченная (по времени) тепло - хладоустойчивость системы. Если это условие не выполняется, и температура объекта превысит предельно допустимые значения, то интервал времени от начала теплового воздействия до достижения предельно допустимой температуры, характеризует продолжительность сохранения тепло - хладоустойчивости объекта. Например, при помощи теплоносителя - воды, проходящей через дополнительный теплообменник, осуществляется отвод в окружающую среду части тепловой энергии двигателя в период работы АЦ с пожарным насосом. Активная тепловая защита АЦ от теплового воздействия на пожаре осуществляется орошением водой топливного бака, экранированием кабины, кузова водяными завесами. Эти способы впервые были исследованы в работах д. т. н. Исхакова X. И. [42, 43, 44].
Активная тепловая защита АЦ зимой может осуществляться за счет использования бортовых и внешних источников тепловой энергии. На рис. 2.1.а. в общем виде представлена модель большой системы "АЦ - элемент - среда". где Еоб - энергия, переданная для обогрева элемента АЦ; Епот -потери энергии с поверхности элемента АЦ; Ек - потери энергии в коммуникациях; Еох - энергия отводимая к холодильнику; Евс - энергия поступающая к элементу от внешней среды.
При температуре окружающей среды имеющей большее значение, чем средняя температура поверхности элемента, будет происходить передача тепловой энергии от среды к элементу АЦ. Эти случаи подробно рассмотрены в работах Быковцева Ю. А.[21 ] и особенно д. т. н. Исхакова Х.И. [42, 43, 441.
Поэтому далее в настоящей работе рассматривается случай, когда температура окружающей среды имеет меньшее значение, чем средняя температура поверхности элемента АД и отсутствует воздействие внешнего (по отношению к АЦ) источника тепловой энергии. В этом случае уравнение энергетического баланса каждой подсистемы активной тепловой защиты элемента, в установившемся тепловом режиме, будет иметь вид
Тепловая подготовка силового агрегата АЦ в гараже. Значения рациональных температур содержания элементов силового агрегата АЦ в гараже должны удовлетворять следующим критериям их эффективности, (см. главу 1): 1. Минимальному времени следования АЦ на пожар; 2. Минимальным износам элементов силового агрегата АЦ; 3. Минимальным затратам энергии на тепловую подготовку; 4. Максимальной экономии топлива при следовании АЦ по вызову.
Оптимальным диапазоном температур элемента АЦ называются значения температур, обеспечивающих максимальную эффективность параметров его функционирования.
Рациональная температура жидкости в блоке двигателя АЦ - это минимальная средняя температура охлаждающей жидкости, при которой допустимо немедленное включение двигателя под нагрузку (величина износов Да.1 10%, см. рис. 1.4) и обеспечивается, при движении АЦ в оперативном режиме, величина средней скорости движения близкая к максимальной (АУ 10%), где ДУ, км/ч - приращение скорости движения автомобиля при повышении температуры охлаждающей жидкости блока двигателя от рациональной до оптимальной.
Рациональная температура масла в картере двигателя - это минимальная средняя температура масла в картере, при которой, вязкость масла обеспечивает своевременное его поступление к трущимся парам, что обеспечивает величину износов деталей двигателя, близкую к минимальной (Аа2 и Да3 10%, см. рис. 1.4), где Да2 и Даз, % - уменьшение скорости износа, при повышении температуры моторного масла от рациональной до оптимальной температуры.
Рациональная температура масла в коробке передач - это минимальная средняя температура масла в картере коробки передач, при которой, вязкостное состояние масла, при немедленном включении агрегата под нагрузку, не приводит к значительным потерям мощности (Дц 10%), где Ад - уменьшение величины мощности гидромеханических потерь, при повышении температуры масла в коробке передач от рациональной до оптимальной температуры, (см. рис. 1.7).
Анализ зависимости износов автомобильного двигателя АЦ от температуры охлаждающей жидкости (рис. 1.4, глава 1) позволяет сделать вывод о том, что при повышении температуры охлаждающей жидкости от +10С до +50С, происходит резкое уменьшение ( в 4 - 5 и более раз) пусковых износов цилиндров и поршней блока двигателя [2, 58, 63, 110]. При дальнейшем повышении температуры, величина изменения скорости износов уменьшается незначительно (А0С1 10%), где Ааь % - уменьшение скорости износа блока двигателя при повышении температуры охлаждающей жидкости от рациональной до оптимальной температуры. Следовательно, по критериям минимальной величины износов и потерь мощности на трение, рациональными температурами охлаждающей жидкости блока цилиндров двигателя АЦ являются температуры в диапазоне +50...60С.
Из результатов экспериментов ВНИИПО [109] (рис. 1.9) и результатов наших экспериментов (рис. 4.18, глава 4) следует, что после прогрева блока двигателя до + 50...55С резко возрастает средняя скорость движения АЦ. При дальнейшем возрастании температуры блока двигателя, средняя скорость движения АЦ увеличивается незначительно (АУ 10%), где АУ км/ч - приращение средней скорости движения АЦ, при повышении температуры охлаждающей жидкости от рациональной до оптимальной температуры. Поддержание более высоких значений температур блока цилиндров (выше +60 ... 65С) может привести к образованию паровых пробок в топливной системе карбюраторных двигателей из-за испарения легких фракций бензина и задержкам с выездом АЦ, (см главы 1 и 4). Следовательно, по критерию минимального времени следования пожарного автомобиля к месту вызова, рациональными значениями температур блока цилиндров двигателя являются температуры в диапазоне +50 ... 60С.
Методика исследования процессов охлаждения элементов АЦ
Исследование естественного охлаждения элементов АЦ в условиях низких температур производилось при значениях средней температуры на ружного воздуха -20 и -30С, (при предельно допустимом отклонении текущих значений температур ±10%), и значениях средней скорости ветра 1, 5, 10 и 15 м/с, (при предельно допустимом отклонении текущих значений скоростей ветра ± 40%). Установлено, что направление обдува АЦ ветром на открытой местности незначительно (не более 3...5%) влияет на скорость изменения температуры огнетушащих веществ в цистерне и пенобаке. При нахождении АЦ за естественными укрытиями, с подветренной стороны зданий, сооружений, влияние ветра существенно уменьшается. В связи с этим, в ходе экспериментов, АЦ размещались с наветренной стороны зданий и сооружений. В транспортном оперативном режиме следования АЦ, какого - либо влияния скорости ветра на скорость охлаждения элементов не выявлено, поэтому, при описании теплового состояния элементов в транспортных режимах, скорость ветра не указывается. Средняя скорость ветра измерялась чашечным анемометром МС-13 (ГОСТ 6376-74), с диапазоном измерения 0...20 м/с и пределом погрешности (АУВ = 0,3 + 0,05УВ).
После проведения серии опытов, проводилась обработка полученных экспериментальных данных. Например, в ходе двух экспериментов имел место различный суточный ход изменения температуры воздуха, (±10% от заданного значения = - 30С, см. рис. 3.10 и 3.11). Результаты серии экспериментов, удовлетворяющих вышеназванным условиям, определялись, как среднее арифметическое полученных в каждом опыте значений. Например, разовая хладоустойчи- вость цистерны в первом опыте составила 3,7 ч, во втором - 4,5 ч. Следовательно, среднее значение разовой хладоустойчивости цистерны в водой, при числе опытов (п = 2), температуре наружного воздуха минус 27...33С (1ср12 = - 29,5С), скорости ветра 3...7 м/с (1/ф12 = 5 м/с), составляет: тср = (Т1 + т2)/2 = (3,7 + 4,5)/2 = 4,1 ч. По результатам последующих натурных экспериментов, удовлетворяющих сформулированным выше условиям, среднее значение искомой величины может быть уточнено, однако любой из опытов, в пределах принятого доверительного интервала (0,9), может служить иллюстрацией исследуемого явления. Поэтому в работе, в некоторых случаях, описываются и иллюстрируются опыты, результаты которых, наиболее близки к среднему значению. Для уменьшения влияния суточного хода температур, эксперименты проводились преимущественно в месяцы с минимальным суточным ходом температур (декабрь - январь) [55].
Периодически на диаграммной ленте самопишущего прибора КСП-4, от руки, отмечалось среднее значение скорости ветра. Это позволило зафиксировать в реальном масштабе времени не только значения температур, но и скорость ветра, (см. приложение XI, рис. XI. 1). Затем вычислялось среднее арифметическое значение температуры воздуха и скорости ветра за период проведения опыта. Достоверными признавались экспериментальные данные, полученные в области изменения температур воздуха и скоростей ветра, средние значения которых, за период эксперимента, отличались не более чем на 10% от заданных. Это позволило обеспечить в ходе натурных экспериментов на открытом воздухе, вполне удовлетворительную воспроизводимость результатов (от 5 до 12%).
Из рис. 3.10 и 3.11 можно установить, что в стационарном режиме использования АЦ, скорость охлаждения воздуха в отсеках АЦ с наветренной и подветренной стороны различны. Эти различия обусловлены преобладающим направлением переноса конвективных тепловых потоков от поверхности цистерны с водой, под воздействием ветрового напора. В связи с этим, в работе приводятся результаты серии опытов для элементов, находящихся в наиболее неблагоприятных тепловых режимах, т.е. для отсеков с наветренной стороны АЦ.
Сравнение результатов экспериментов, приведенных на рис. 3.10 и 3.11, показывает, что при экспозиции в пределах 1-9 часов, влияние суточного хода температур воздуха, (±10% от заданного значения), на скорость охлаждения ОТВ незначительно. Это связано с большими абсолютными значениями температурных напоров и незначительным изменением возмущающих факторов.
Для мало инерционных в тепловом отношении элементов, например отсеков с ПТВ, влияние суточного хода температур в первые 2-3 часа экспозиции также незначительно. По мере уменьшения величины температурных напоров (более 4 часов экспозиции), зависимость изменения средней температуры воздуха в отсеках, от температуры окружающей среды, увеличивается и наступает регулярный тепловой режим третьего рода, когда температуры элементов не зависят от начальных условий, а температура любой точки элемента изменяется с тем же периодом, что и амплитуда изменения температуры окружающей среды [56]. Характер изменения параметров окружающей среды и температуры элементов в каждом из опытов индивидуален, что затрудняет анализ результатов серии экспериментов. В связи с этим, нами использован подход, позволяющий приводить результаты серии опытов к "общему знаменателю". Суть его заключается в следующем.
В квазистационарном тепловом режиме, (см. рис. 3.10), температурный перепад (ATj) между средней температурой воздуха в отсеке (Тотс) и температурой окружающей среды (Т0), также становится величиной квазистационарной (например, ЛТ6да ЛТ8 да const). Это явление обусловлено тепловым воздействием цистерны с водой, т.е. случаем подогрева элемента "подогревателем недостаточной мощности" (см. главу 2, выражение 2.39). Если при описании опытов принять допущение, что температура наружного воздуха является величиной постоянной, то температура воздуха в отсеке (Тотс), может быть найдена из выражения:
Энергетическая эффективность способов и средств тепловой подготовки элементов силового агрегата АЦ
Как уже отмечалось в первой главе, энергетическая эффективность средств или схем подогрева может быть оценена величиной годовых затрат энергии на обогрев. В условиях средней полосы России, продолжительность периода устойчивых отрицательных наружных температур, составляет около 6 месяцев (с октября по март). Для Чувашии этот период составляет, в среднем, 175 суток в год [55].
Как отмечалось в первой главе, на протяжении дежурных суток двигатель АЦ пускается в условиях гаража, в среднем, четыре раза: при приеме дежурства караулом - отсчет времени дежурных суток на графике начинается с этого момента, и при трех выездах пожарного автомобиля. Схематично это можно представить, как показано на рис. 4.12. При смене караула прогрев двигателя характеризуется увеличением температур на участках 0 - aj и 0 - а2, охлаждение двигателя затем происходит во времени не участках aj - 61 и а2 - в2. Зимой, при ежедневном техническом обслуживании (ЕТО), выездах в пределах радиуса выезда части (2...3 км), при начальной средней температуре блока двигателя +10...20С, блок двигателя прогревается до температуры 40...55С, (кривая 1). Если начальная температура блока двигателя составляет +40...50 С, то он прогревается в период ЕТО до 75...80С, (кривая 2).
В гараже охлаждение двигателя происходит, как показано кривыми 1 и 2. Таким образом, температура охлаждающей жидкости в блоке (и масла в картере двигателя - при комбинированном подогреве) двигателя АЦ с подогревателем поддерживается на уровне не ниже +50С, а в случае его отсутствия, она понижается вплоть до температуры воздуха в гараже, +10С.
Зимой, при среднем суммарном времени внегаражного пребывания АЦ 3...4 часа, температуре воздуха в гараже +10...12С, среднее время работы подогревателей равно 13... 14 часам, (см. рис. 4.13, где Xj, х2, х3 - интервалы времени работы подогревателя, час). Тогда за 175 суток, его наработка N, в часах, составит: N = 175 14 = 2450 час.
Например, для схемы 1.1. (см. рис. 4.3.а, мощность подогревателя - 1,0 кВт) годовые энергозатраты У 1.1, кВтч, составят за 175 суток: У 1.1= N4 1,0 = 2450 кВт ч
Диаграммы годовых энергозатрат для климатических условий Чувашии, схем электрического подогрева блока цилиндров двигателя, приведены на диаграмме рис. 4.13, подогрева картерного масла в двигателе и коробке перемены передач - на рис.4.14, схем комбинированного подогрева силового агрегата - на рис. 4.15. Из диаграмм можно установить безусловное преимущество способа электрического подогрева по сравнению с водоподогревом. При этом, энергозатраты (см. рис. 4.13), обратно пропорциональны значениям Ш] - коэффициентам энергетической эффективности способов и схем подогрева. Таким образом, чем больше коэффициент, тем ниже энергозатраты, (см. табл.4.1.6). Это свидетельствует о терминологически правильном названии коэффициента.
Анализ диаграмм на рис. 4.13 - 4.15 позволяет также сделать вывод о высокой энергоэффективности комбинированных схем электрического подогрева, которые позволяют осуществлять дополнительный подогрев масла в картере двигателя или в коробке перемены передач без увеличения общей потребляемой мощности. Наибольшей энергетической эффективностью обладают комбинированно- совмещенные схемы электрического подогрева, (схемы 4.1 и 5.1), у которых, часть поверхности корпуса выносного подогревателя, используется в качестве контактного теплообменника (конфорки), для подогрева масла в картере двигателя или коробки перемены передач. Однако, как нами уже отмечалось выше, без изменения конструкции картеров двигателя и коробки перемены передач (устройство рубашки обогрева), эти схемы не обеспечивают достижения рациональных температур смазочного масла (+40...50С). Таким образом, только при установке подогревателей по схеме 5.2 обеспечивается достижение рациональных (нормативных) температур всеми элементами силового агрегата АЦ, при этом достигается максимальная энергоэффективность комплексной системы подогрева силового агрегата. Это позволяет сделать вывод о том, что тепловая подготовка силового агрегата по схеме 5.2 является наиболее целесообразной.