Введение к работе
Актуальность проблемы.
Исследование магнитных, механических, магнитоупругих и резонансных свойств аморфных ферромагнетиков способствует развитию физики ферромагнетизма, позволяет выявить особенности известных явлений и эффектов в этом классе магнитных материалов и применить их в различных областях науки и техники, существенно расширить область применения аморфных ферромагнитных материалов.
Разработка и создание более совершенных датчиков и преобразователей магнитного поля и механических величин остается важной задачей современной науки и техники. Автоматизация процессов производства, развитие технической базы научных исследований, создание современных технологий требуют более совершенных методов контроля и измерения различных параметров, в том числе магнитных и механических. В геофизике, для. обнаружения и измерения слабых магнитных полей естественного и искусственного происхождения, требуются высокочувствительные малогабаритные датчики магнитного поля, способные измерять одновременно три компоненты магнитного поля и работать в широком интервале температур. В низкочастотной радиосвязи существует проблема создания малогабаритных параметрических антенн с узкой диаграммой направленности. В биологии и медицине требуются миниатюрные датчики сверхслабых магнитных полей, длительное время работающие при нормальных условиях и способные в ряде случаев заменить дорогостоящие СКВИДы.
Уникальные магнитные и магнитоупругие характеристики аморфных и нанокристаллических ферромагнитных сплавов позволяют создавать на их основе высокочувствительные миниатюрные датчики и преобразователи слабого магнитного поля, а также разнообразные датчики механических величин.
Высокая магнитная проницаемость, близкий к теоретическому пределу коэффициент магнитомеханической связи и малые потери на перемагничивание позволяют с помощью различных методов преобразования получить экстремально низкий порог чувствительности датчиков магнитного поля, выполненных на основе аморфных ферромагнитных сплавов, расширить диапазон частот измеряемого магнитного поля. На основе применения аморфных ферромагнетиков возможно
существенное улучшение параметров аппаратуры считывания информации с магнитных носителей, позволяющее в несколько раз увеличить разрешающую способность и количество записываемой информации.
Механические датчики на основе механоимпедансного эффекта в аморфных и нанокристаллический сплавах по простоте могут быть сравнимы с тензорезисторами, но отличаются от последних более высокой чувствительностью и долговечностью. В области низких и сверхнизких частот они могут успешно конкурировать с пьезоэлектрическими керамическими преобразователями.
Цель диссертационной работы - экспериментальное исследование магнитных, магнитоупругих и резонансных свойств аморфных ферромагнитных сплавов, создание и совершенствование методов и средств измерения слабого магнитного поля и механических величин на основе различных физических эффектов и явлений в аморфных и нанокристал-лических ферромагнитных сплавах.
Основные задачи исследования:
-
Экспериментальное исследование магнитных и магнитоупругих характеристик и резонансных параметров аморфных ферромагнитных сплавов при их высокочастотном возбуждении упругими и электромагнитными колебаниями.
-
Создание новых методов измерения слабого магнитного поля на основе магнитоупругого взаимодействия в аморфных ферромагнитных сплавах.
3. Применение результатов исследования магнитных и магнито
упругих свойств аморфных ферромагнитных сплавов для снижения
влияния нестабильности, связанной с коэрцитивной силой ферромагне
тиков и сдвигом кривой намагничивания.
4. Повышение чувствительности магнитоупругих датчиков
магнитного поля, снижение порога чувствительности и уменьшение их
геометрических размеров на основе применения магнитоупругих
эффектов и явлений в аморфных ферромагнитных сплавах с компен
сированной магнитострикцией и наведенной магнитной анизотропией.
5. Исследование возможности применения аморфных и нанокри-
сталлических ферромагнитных сплавов для создания миниатюрных
датчиков магнитного поля для считывания сигналов с магнитных
носителей информации и разработка различных датчиков механичес-
ких величин: силы, смещения, кручения, вибрации и т.п. на основе применения магнитоимпедансного и механоимпедансного эффектов.
-
Исследование условий возникновения автопараметрического резонанса и устойчивости внутреннего параметрического усиления сигнала основной частоты возбуждения в колебательном LC-контуре с аморфным или нанокристаллическим ферромагнитным сердечником, находящимся в постоянном магнитном поле смещения.
-
Исследование нелинейности процесса намагничивания лент аморфных и нанокристаллических ферромагнитных сплавов при локальном возбуждении переменным магнитным полем.
-
Создание новых методов измерения слабого магнитного поля на основе преобразования частоты возбуждения во вторую гармонику этой частоты посредством магнитоупругого взаимодействия при локальном воздействии переменным магнитным полем на участок аморфной ферромагнитной ленты с компенсированной магнитострикцией.
-
Создание новых методов измерения слабого переменного магнитного поля на основе автопараметрического усиления амплитуды сигнала основной частоты возбуждения и фазы сигнала удвоенной частоты в колебательном контуре с сердечником из аморфного или нанокристаллического ферромагнитного сплава.
Научная новизна работы:
1. Экспериментально установлено наличие сильного магнито
упругого взаимодействия в аморфных сплавах с компенсированной
магнитострикцией и поперечной магнитной анизотропией при возбуж
дении упругими волнами. Впервые предложено применить магнитоуп-
ругое взаимодействие в аморфном ферромагнитном сплаве с компен
сированной магнитострикцией и поперечной наведенной магнитной
анизотропией для создания магнитоупругих датчиков и преобразо
вателей слабого магнитного поля.
-
Экспериментально установлено, что при прохождении переменного электрического тока через аморфный ферромагнитный проводник зависимость импеданса аморфного проводника от величины внешнего магнитного поля (магнитоимпедансный эффект) на начальном участке существенным образом зависит от внутренних механических напряжений в аморфном ферромагнитном проводнике.
-
Установлено, что в магнитоимпедансном эффекте, при импульсном электрическом токе, время релаксации магнитной системы провод-
ника из аморфного ферромагнитного сплава значительно превосходит таковое в кристаллическом ферромагнитном проводнике. Этим объясняется проявление магнитоимпедансного эффекта в аморфных ферромагнитных сплавах на относительно низких частотах синусоидального переменного электрического тока.
-
Впервые экспериментально установлена сильная зависимость импеданса проводника из аморфного или нанокристаллического ферромагнитного сплава от приложенного к нему механического напряжения при прохождении через этот проводник переменного электрического тока (механоимпедансный эффект). Показано, что в лентах аморфных ферромагнитных сплавов с любым направлением магнитной анизотропии механическое напряжение оказывает более сильное влияние на величину максимального изменения импеданса проводника, чем это может быть вызвано внешним магнитным полем.
-
Впервые показана возможность создания разнообразных механических датчиков силы, смещения, упругих колебаний, давления, кручения, и т.п. на основе механоимпедансного эффекта в аморфных и нанокристаллических ферромагнитных сплавах.
-
Экспериментально установлено наличие сильного магнитоупру-гого взаимодействия в аморфных ферромагнитных сплавах с компенсированной магнитострикцией при их возбуждении локальным переменным магнитным полем, что проявляется в виде генерации упругих колебаний и появлении продольных вариаций намагниченности в аморфной ленте с частотами четных гармоник частоты возбуждения.
-
Впервые экспериментально наблюдалось и было исследовано явление автопараметрического резонанса в колебательном контуре с сердечником из ленты аморфного или нанокристаллического ферромагнитного сплава.
-
Предложены методы измерения слабых магнитных полей, основанные на зависимости амплитуды и фазы сигнала второй гармоники частоты возбуждения от величины постоянного магнитного поля при локальном воздействии переменным магнитным полем на сердечник из аморфного ферромагнитного сплава с компенсированной магнитострикцией.
-
Предложены методы измерения слабых переменных магнитных полей, основанные на явлении автопараметрического усиления в
колебательном контуре с сердечником из аморфного или нанокристал-лического ферромагнитного сплава. Основные защищаемые положения:
-
В лентах аморфных ферромагнитных сплавов с компенсированной магнитострикцией при возбуждении упругими колебаниями и при возбуждении локальным неоднородным переменным магнитным полем имеет место эффективное магнитоупругое взаимодействие.
-
Основной причиной проявления магнитоимпедансного и меха-ноимпедансного эффектов (сильной зависимости импеданса от величины внешнего продольного магнитного поля и приложенного к проводнику механического напряжения при прохождении через этот проводник переменного или импульсного электрического тока) является магнитоупругое взаимодействие в этих магнитных материалах.
-
Автопараметрический резонанс в колебательном контуре с сердечником из ленты аморфного или нанокристаллического ферромагнитного сплава возникает вследствие генерации четных гармоник частоты возбуждения в результате магнитоупругого взаимодействия при возбуждении ленты локальным или неоднородным магнитным полем.
-
На основе магнитоупругих эффектов в аморфных ферромагнитных сплавах могут быть созданы: датчики слабого магнитного поля (на основе магнитоупругого взаимодействия в аморфных ферромагнетиках с компенсированной магнитострикцией); датчики магнитного поля и датчики механических величин (на основе магнитоимпедансного и механоимпедансного эффектов в проводнике из аморфного или нанокристаллического ферромагнитного сплава); датчики слабого магнитного поля (на основе автопараметрического резонанса в колебательном LC-контуре с аморфным или нанокристаллическим ферромагнитным сердечником).
Практическая ценность данной работы заключается в применении магнитоупругих эффектов и явлений, проявляющихся в аморфных и нанокристаллических ферромагнитных сплавах, для создания миниатюрных высокочувствительных датчиков и преобразователей слабого магнитного поля и разнообразных датчиков механических величин.
Достоверность полученных результатов подтверждена испытаниями макетов датчиков и преобразователей, проведенных с помощью аппаратуры и приборов, прошедших необходимую аттестацию, а также
независимыми испытаниями, проведенными в НПО "ВНИИМ имени Д.И.Менделеева" (г. Санкт-Петербург).
Апробация работы и публикации. По теме диссертации опубликовано более 45 печатных работ, в том числе получено 9 авторских свидетельств. Основные выводы и положения работы представлены на трех всесоюзных и двенадцати международных научно-технических конференциях.
Объем работы. Содержание диссертации изложено на 218 страницах с 56 рисунками. Список литературы включает 162 работы.