Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Коротченко Андрей Юрьевич

Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин
<
Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Коротченко Андрей Юрьевич. Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин: диссертация ... доктора технических наук: 05.16.04 / Коротченко Андрей Юрьевич;[Место защиты: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "МАТИ - Российский государственный технологический университет имени К.Э.Циолковского"].- Москва, 2014.- 306 с.

Содержание к диссертации

Введение

Глава 1. Анализ комплексности технологических решений по совершенствованию способов уплотнения смеси и устранения усадочных дефектов и горячих трещин в отливках 12

1.1. Взаимосвязь процессов, протекающих при уплотнении смеси в форме

и формировании усадочных дефектов и горячих трещин в отливках 12

1.2. Анализ уплотнения сырых песчано-глинистых смесей 14

1.2.1. Варианты методик для расчета уплотнения смеси в форме 14

1.2.2. Особенности реологических моделей для формовочных смесей 19

1.2.3. Определение значений элементов реологической модели смесиЗО

1.3. Формирование отливок в литейной форме без усадочных дефектов35

1.3.1. Основные методы расчета параметров прибылей 38

1.3.2. Определение зоны питания прибылей 42

1.3.3. Критериальная оценка образования усадочной пористости в отливках 45

1.4. Процесс образования горячих трещин в отливках 49

1.4.1. Причины образования горячих трещин и способы борьбы с ними 49

1.4.2. Критерии образования горячих трещин в отливках 51

Выводы по главе 1 58

Глава 2 Исследование условий формообразования при получении фасонных отливок в песчаных формах 60

2.1 Методика проведения экспериментов 60

2.2. Результаты экспериментов. Определение вида реологической модели смеси и значений ее элементов 63

2.3. Методика определения значений элементов реологической модели смеси 74

2.4. Изменение значений элементов реологической модели при изменении плотности смеси 79

Выводы по главе 2 83

Глава З Разработка технических и технологических решений, повышающих качество уплотнения песчаных форм 85

3.1. Математическая модель уплотнения формовочной смеси 85

3.1.1. Связь между напряжениями и деформациями в смеси 85

3.1.2. Двумерная модель формовочной смеси 90

3.2. Расчет уплотнения смеси в плоском сечении формы при встряхивании 92

3.4. Упрощение математической модели уплотнения смеси 96

3.5. Одномерная математическая модель уплотнения смеси 101

3.6. Математическая модель уплотнения смеси импульсом сжатого воздуха 102

3.7. Расчеты уплотнения смеси импульсом сжатого воздуха 104

3.8. Пути повышения качества формы при импульсном уплотнении 107

3.9. Исследование влияния перетекания смеси при уплотнении на качество формы 112

3.10. Пути повышения качества формы при уплотнении смеси встряхиванием 116

3.11. Исследование влияния вида напряженного состояния смеси на характер уплотнение смеси. Дифференциальное уравнение уплотнения смеси 121

3.12. Пути развития способов изготовления песчаных форм 126

Выводы по главе 3 130

Глава 4 Разработка технических и технологических решений, обеспечивающих получение отливок с заданным уровнем усадочных дефектов 132

4.1. Фильтрация жидкого расплава в двухфазной зоне 133

4.2. Критерии оценки кристаллического строения отливки 136

4.3. Разработка критериев для расчета образования пористости в отливках и длины зоны питания прибылей 141

4.4. Влияние условий литья на критические значения критериев пористости 156

4.4.1. Учет действия массовых сил на критические значения критериев пористости 157

4.4.2. Влияние газонасыщенности расплава на критические значения критериев пористости 160

4.5. Методика расчета вероятности образования пористости в отливках 166

Выводы по главе 4 169

Глава 5. Разработка технических и технологических решений, предохраняющих отливки от образования в них горячих трещин 171

5.1. Влияние усадочных процессов на деформации растяжения в двухфазной области 172

5.2. Влияние деформаций растяжения в двухфазной области на тепловые и усадочные процессы в отливках 180

5.2.1. Изменение доли твердой фазы при деформации двухфазной области 181

5.2.2. Особенности расчета теплоты кристаллизации в деформирующихся областях отливки 183

5.2.3. Учет деформаций растяжения при вычислении гидравлической проницаемости 185

5.2.4. Изменение фильтрации расплава в двухфазной области под действием деформаций растяжения 187

5.2.5. Оценка перепада давления в двухфазной области в условиях действия растягивающих деформаций 193

5.2.6. Критическое значение критерия пористости К1 с учетом деформаций растяжения 194

5.3. Экспериментальная оценка влияния затруднения усадки на образование пористости в отливках 199

5.3.1. Постановка эксперимента и выбор параметров элементов отливок, формирующих затрудненную усадку 199

5.3.2. Методика проведения эксперимента и обработка результатов. 201

5.3.3. Оценка влияния деформаций растяжения на образование пористости в отливках 204

Выводы по главе 5 208

Глава 6 Разработка универсального критерия, общей модели этапов техпроцесса и единых технологических приемов, обеспечивающих заданные служебные свойства отливок 210

6.1. Универсальный критерий бездефектных зон для этапов техпроцесса изготовления отливки 210

6.2. Общая реологическая модель для трех этапов техпроцесса на основе метода аналогий в механике и теории теплопроводности 219

6.3. Разработка единых технологических приемов, обеспечивающих заданные служебные свойства отливок 229

Выводы по главе 6 233

Глава 7 Численное моделирование процессов формирования отливок на основе разработанных критериальных зависимостей 234

7.1. Влияние значений теплофизических параметров расплава на

образование усадочных раковин и пористости 234

7.1.1. Плотность сплава в твердом и жидком состоянии 234

7.1.2. Начало и конец фильтрации жидкого сплава 240

7.1.3. Проверка расчетов образования усадочных дефектов на адекватность 243

7.2. Разработка техпроцесса изготовления отливки типа «подшипник»251

7.3. Разработка техпроцесса изготовления отливки типа «корпус» 259

7.4. Разработка техпроцесса изготовления отливки типа «балка

надрессорная» 267

Выводы по главе 7 279

Общие выводы 280

Литература

Варианты методик для расчета уплотнения смеси в форме

Вейник А.И. отмечал «...подготовительный этап однозначно определяет характер протекания процесса формирования отливки (окончательный этап), а окончательный этап однозначно определяет свойства отливки». Со своей стороны добавим: служебные свойства отливки. Также Вейник А.И. отмечал то, что «...операции, составляющие подготовительный этап, есть именно то основное средство, с помощью которого технолог может воздействовать на ход течения процесса формирования, а, следовательно, и на качество отливки».

Таким образом, литейная форма, изготовленная путем уплотнения СПГС, оказывает существенное влияние на формирование служебных свойств отливки.

Действительно, управляя податливостью песчаной формы (путем изменения степени ее уплотнения), мы можем управлять как величиной, так и распределением напряжений, возникающих в отливке, тем самым, предотвращая возможность возникновения горячих трещин в отливке.

Управляя степенью уплотнения песчаной формы, мы управляем, с другой стороны, тремя основными теплофизическими характеристиками формы, которые определяют характер затвердевания отливки в форме. Эти параметры - плотность, теплопроводность и удельная теплоемкость формы.

Следовательно, имея в руках набор знаний и умений по управлению распределением плотности смеси по объему формы, мы получаем возможность более эффективно влиять на усадочные процессы и напряженно-деформированное состояние отливки в процессе ее затвердевания в литейной форме. Рассмотрению вопросов кристаллизации сплавов в литейной форме, влияния теплофизических свойств сплавов на характер затвердева 14 ния и образования литейных дефектов в последние годы посвящен целый ряд учебных пособий для студентов литейных специальностей [176 - 179].

Второй объединительной чертой столь разнохарактерных процессов является то, что для их изучения предлагается использовать единый критериальный подход, который позволяет применить знания, полученные при изучении поведения смеси при уплотнении, к изучению особенностей формирования усадочной пористости и горячих трещин в отливках.

И, наконец, третья объединительная черта - процессы уплотнения смеси в форме, усадка отливки и горячие трещины рассматриваются с единой позиции как сложные системы, для изучения которых предлагается использовать, в том числе, и положения системотехники.

Варианты методик для расчета уплотнения смеси в форме

Все существующие методики расчета можно условно разбить на три группы. К первой группе относятся методы расчета, в которых используются эмпирические зависимости между величиной плотности смеси и величиной внешней нагрузки. Ко второй группе можно отнести методики, в которых даны рекомендации по величине внешней нагрузке и характеру ее приложения, обеспечивающие заданное качество уплотнения. Методики третьей группы - математические модели, описывающие уплотнение смеси под действием внешних нагрузок.

Все методики в той или иной степени отражают положения теории уплотнения песчаных смесей. Как и всякая теория, теория уплотнения песчаных смесей (далее просто смесей), есть система научных принципов, идей, обобщающих практический опыт и отражающих закономерности природы.

Система научных принципов или обобщенных положений позволяет объяснить сущность явлений, происходящих в смеси при ее уплотнении внешними нагрузками. Знать - значит уметь. Чем полнее система обобщенных положений об особенностях механизма уплотнения смеси, тем легче решить главную задачу технологии изготовления форм - получить качественную форму с минимальными затратами энергии и времени. Сформулируем основные положения теории уплотнения. 1. Чистота поверхности, размерная и массовая точность отливок, изготовленных литьем в разовые формы, зависят от распределения плотности смеси по объему формы. 2. Между величиной плотности смеси и величиной приложенной внешней нагрузки существует однозначная зависимость. 3. Смесь при уплотнении ведет себя как упруго-вязкий сжимаемый материал. 4. Поведение смеси при уплотнении рассматривается на феноменологическом уровне.

Первое основное положение теории уплотнения дает возможность для оценки качества формы использовать только одну ее характеристику -плотность смеси. Остальные основные положения служат для создания расчетных методик, с помощью которых можно установить связь между распределением плотности смеси в форме и величиной приложенной внешней нагрузки.

Одной из первых расчетных методик можно по праву считать эмпирическую зависимость средней плотности смеси в форме р от величины давления прессования Р (получившее название уравнения прессования), предложенную Н.П. Аксеновым [2].

Методика определения значений элементов реологической модели смеси

Усадочной пористостью называется скопление мелких пустот остроугольной формы, образующихся в результате сокращения объема металла при затвердевании в условиях недостаточного питания. В отличие от усадочных раковин, для образования усадочной пористости необходимо наличие в данной зоне отливки связанного скелета твердой фазы. Поры могут формироваться только в междендритных пространствах.

В работе [43] усадочные раковины относят к макропористости, а усадочную пористость к микропористости.

Отличительный признак, по которому обычно различают разные типы пористости, базируется в основном на морфологии, размере и местоположении пор, которые появляются в сплаве. Среди различных типов пористости, можно упомянуть:

Макропористость появляется около усадочных раковин. Поэтому поры близко расположены к области, где усадка металла ясно видна. Они имеют большой размер и могут быть устранены изменением размеров и расположения прибылей. Микропористость более или менее однородно распределена по металлу в форме очень маленьких дырочек, размер которых обычно от десятков до сотен микрометров.

Если эти поры формируются на ранней стадии затвердевания (то есть при низкой доле твердой фазы), то они имеют форму близкую к сферической, так как их рост слабо ограничен твердыми дендритными осями. Этот тип микропористости упоминается как газовая пористость, несмотря на то, что усадка металла также играет роль. Это связано с тем, что расплав перенасыщается газами типа водорода в большинстве сплавов или оксида углерода (СО) в железных сплавах, и они выделяются в виде маленьких пузырей. Этот тип дефекта может быть устранен дегазацией жидкого металла и использованием сухих форм.

Для сплавов, характеризующихся большим интервалом кристаллизации (например, алюминиевые сплавы с малой концентрацией меди или магния) кристаллизация междендритной эвтектики сопровождается большой усадкой. В этих областях, жидкость с трудом компенсирует эту усадку (плохое питание), и появляется некоторая микропористость, обычно называемая усадочной пористостью. Так как такие поры развиваются на последней стадии кристаллизации (то есть, когда доля твердой фазы близка к единице), их рост ограничен хорошо развитыми дендритными осями, и их заключительная форма извилиста.

Влияние дендритного каркаса на конечную форму пор совершенно очевидно: в зоне столбчатых зерен, поры удлинены и повторяют направление первичных осей, тогда как, в равноосной области, поры имеют «равноосный» внешний вид. Из-за извилистого характера, усадочная пористость может быть обнаружена на металлографическом шлифе в форме колоний маленьких более или менее сферических отверстий. Это - результат среза отдельной связанной поры, имеющей намного более сложную форму Как указывает название, поверхностная пористость появляется обычно около поверхности формы. В соответствии с некоторыми теориями, эти поры производятся пузырьками газа или веществами с высокой испаряемостью (например, водой) адсорбируемой на поверхности формы. Как только металл залит, эти пузыри отделяются от поверхности и появляются на некотором расстоянии в металле. Другие теории делают акцент на сегрегации газа, уже растворенного в жидком металле, жестко перемещающимся перпендикулярно к поверхности.

Основные методы расчета параметров прибылей

Г.Ф. Баландин [14] указывает, что для уменьшения пористости отливок и предохранения их от ликвационных дефектов больше других нас должна интересовать лишь одна операция - питание отливки и наиболее распространенные технические средства ее реализации на производстве -прибыли. Методик расчета размеров прибылей довольно много и Б.Б. Гуляев [41] разделил эти методики на три группы:

1. Методики, в основе которых лежат обобщенные производственные данные: М.А. Кремер [47], А.А. Рыжиков [48,49], СВ. Руссиян и др. [50], П.Ф. Василевский [51] и др.

2. Методики, построенные на основе аналитических расчетов: Б.Б. Гуляев [52], И. Пржибыл [53] , А.А. Неуструев [95] и др.

3. Методики, основанные на экспериментальных исследованиях: И.К. Ипатов и др. [54], Б.В. Рабинович [55].

Также в настоящее время активно применяется метод численного моделирования, включающий сложные математические модели на основе дифференциальных уравнений математической физики, решаемые сеточными методами (конечных разностей, конечных элементов и др.). Однако в данном случае параметры прибыли напрямую не рассчитываются, а задаются в исходных данных и затем проверяются компьютерным моделированием формирования литого изделия. В качестве примера отметим лишь работы «Ленинградской школы литейщиков» [185, 186]. Поэтому в дальнейшем остановимся на классификации Б.Б. Гуляева.

Рассмотрим наиболее типичные методики из каждой группы, предназначенные для расчета прибылей для стальных отливок. В работе [56] отмечается, что СВ. Руссиян рекомендует следующие соотношения между толщиной 8отл стенки отливки, диаметром DnH нижнего сечения прибыли, высотой отливки Но и прибыли Н : Hnp=0,6Ho + 0,35Somi. (1.21)

Там же говорится о том, что в первой методике, разработанной П.Ф. Василевским, выбор размеров прибыли проводят по таблицам и графикам, исходя из соотношения высоты отливки и толщины питаемой стенки. Обобщенные расчетные данные были получены им на основании статистической обработке большого числа технологических разработок. Второй метод расчета прибылей П.Ф.

Математическая модель уплотнения смеси импульсом сжатого воздуха

В настоящее время наиболее широко из всех рассмотренных КП используется КП Ниямы в виде G/4R . Установлено, что для стального литья пористость в отливках образуется при G /4R 1 С мин см" . Если перевести в единицы СИ, то получим порядка 775 Сем". Для отливок из алюминиевых сплавов пористость образуется при значении критерия меньше 2700 С1/2с1/2м"1 [59].

Выводы.

1. Все критерии пористости строятся на параметрах, подлежащих определению при численном моделировании процесса затвердевания отливки в форме.

2. Параметры, на которых строятся критерии пористости, в явном виде не связаны с геометрией отливки.

3. Предсказать зоны в отливке с усадочной пористостью на этапе разработки литниково - питающей системы невозможно.

В связи с этим можно сформулировать научную задачу работы - развитие теории питания отливки. В качестве практических задач - разработка критерия пористости, с помощью которого можно обоснованно выбирать значения параметров питающей системы отливки, гарантированно обеспечивающих отсутствие усадочных дефектов в отливке. 1.4. Процесс образования горячих трещин в отливках 1.4.1. Причины образования горячих трещин и способы борьбы с ними

Отечественный опыт (до начала 90-х годов прошлого века) по выявлению причин образования горячих трещин и способов борьбы с ними изложен в целом ряде работ, среди которых [14,118,119,143-145,181].

В настоящее время вопрос устранения горячих трещин в отливках вновь стал чрезвычайно актуальным в свете участившихся случаев крушения грузовых составов на железных дорогах вследствие изломов отливок рамы боковой [140 - 142]. Этому вопросу посвящены и диссертации [146, 187].

Итак: - горячие трещины в фасонных отливках образуются вследствие торможения их свободной линейной усадки формой или стержнями и локализации возникающей деформации растяжения; - горячие трещины возникают и развиваются преимущественно в эффективном интервале кристаллизации сплавов (в ЭИК — по А. А. Боч-вару или в ТИХ — по Н. Н. Прохорову), т. е. там, где возникает и развивается их свободная линейная усадка; - горячие трещины — результат хрупкого разрушения затвердевающего сплава по границам растущих кристаллов.

Для устранения горячих трещин применяют следующие способы: - увеличение податливости форм и стержней; - упрочнение тепловых узлов отливок установкой холодильников, литейных ребер, галтелей в сопряжениях элементов конструкции; - снижение температуры и скорости заливки, а также рациональное конструирование литниковой системы для устранения разогрева тела отливки у места установки питателей; - уменьшение содержания примесей, повышающих, по данным технологических проб, горячеломкость сплава; - изменение конструкции отливок с целью уменьшения или устранения торможения их свободной линейной усадки. В плане дальнейшего развития теории по [14]: - уточнение теории горячеломкости сплавов на основе реологии и развитие ее в теорию трещиноустойчивости отливок. В частности, деформацию растяжения в отливке s предлагается определять по формуле [14]: s = теу, где I где L0 - длина отливки; / - длина участка локализации деформации; К - коэффициент, учитывающий все особенности реологического поведения затвердевающей отливки во время торможения ее свободной линейной усадки; К 1.

Схема отливки с местом локализации деформации показана на Рис.1.15 [14].

Схема причин локализации деформации отливки при торможении ее свободной линейной усадки: а) - литье в песчаные формы; б) - литье в кокиль На Рис. 1.15а) причина локализации деформации - местное утолщение в отливке, а на Рис. 1.156) - на участке / толщина кокильной краски больше, чем на всей остальной поверхности.

Параметр т следует рассматривать как коэффициент, определяющий степень локализации деформации затвердевающей отливки при торможении ее свободной линейной усадки формой или стержнем.

С учетом вышеизложенного, в [14] предлагаются два основных пути устранения горячих трещин в отливках.

Первый путь - необходимо располагать элементы затруднения усадки на расстоянии друг от друга, меньшем, чем величина Lk, найденная для данного сплава с помощью технологических проб (Lk - минимальная длина, при которой в утолщении тела пробы образуется горячая трещина).

Второй путь - между элементами затруднения усадки, находящимися на расстоянии друг от друга, большем Lk, предусмотреть дополнительные элементы затруднения усадки, с тем, чтобы новое расстояние между ними стало меньше Lk. Чаще всего такими дополнительными элементами являются ребра.

Критерии образования горячих трещин в отливках

В настоящее время в зарубежных литературных источниках большое внимание уделяется вопросу причин образования горячих трещин в отливках и критериев их образования. В российских журналах, за некоторым исключением [139], практически отсутствуют обзорные статьи, посвященные данному вопросу.

В работе [85], со ссылкой на работу Кэмпбелла (Campbell) [86], отмечается, что два главных дефекта, связанные с нехваткой питания имеют место в отливках - это пористость и горячие трещины. Горячие трещины, в отличие от пористости, образуются в тех областях двухфазной зоны, где на дендриты действуют растягивающие или сдвиговые напряжения. Причина возникновения напряжений связана с неравномерной усадкой расплава при затвердевании разных частей отливки. Если дендриты расходятся под действием растягивающих деформаций, а проницаемость двухфазной зоны очень мала, тогда жидкий расплав не заполняет образующиеся полости, и возникают горячие трещины.

Подробный обзор работ, посвященных проблеме возникновения горячих трещин в отливках, дан в [87]. Сразу отметим, что из советских (российских) авторов упомянуты только И. Медовар [167], В.Н. Савейко, Н.Н. Прохоров и И.И. Новиков, работы которых датированы шестидесятыми годами прошлого века. В обзоре рассмотрены теории возникновения горячих трещин и критерии образования горячих трещин в отливках.

Теории образования горячих трещин в отливках разбиты на две группы.

К первой группе относятся самые первые теории, построенные на рассмотрении напряжений (деформаций), возникающих в отливках при затвердевании. Указывается, что напряжения (деформации) возникают вследствие торможения литейной формой свободной линейной усадки отливки при затвердевании. Упоминается работа Vero [147] (теория залечивания горячих трещин), работа Pumphrey [148], в которой было предложено понятие ТИХ (температурного интервала хрупкости) и работа Pellini [149], в которой сделан важный вывод о том, что горячие трещины появляются в тепловых узлах отливок. Отмечается, что залечивание горячих трещин может происходить за счет относительного перемещения кристаллов или пластических деформаций, которые смещают кристаллы и тем самым закрывают возникшие горячие трещины. Кроме того, горячие трещи 53 ны могут устраняться за счет затекания в эти трещины жидкого расплава из двухфазной зоны.

Ко второй группе относятся теории, основанные на поверхностном натяжении и жидких прослойках расплава между растущими дендритами. Начало этих теорий датировано 1960 г. Борланд (Borland) [150] разработал обобщенную теорию жидких прослоек, в которой учитывалось влияние количества и распределения жидкого расплава между кристаллами на склонность сплавов к образованию горячих трещин (СГТ). Он предложил, что распределение жидкого расплава на поверхности кристаллов определяется отношением энергии на границах раздела между твердым телом/жидкостью (S/L) и твердым телом/ твердым телом (S/S), другими словами - работой адгезии и когезии. Если энергия на границе (S/L) мала, то жидкий расплав распределяется непрерывно по всей поверхности кристаллов и в этом случае сплав имеет высокую СГТ. Если же поверхностная энергия на границе (S/L) велика, то жидкий расплав скапливается на гранях или углах кристаллов, в этом случае между кристаллами образуется плотный контакт, что приводит к снижению СГТ.

В.Н. Савейко [151] предложил, что СГТ зависит от величины объемной усадки, деформации твердого каркаса кристаллов и поверхностного натяжения. Согласно его теории, если растягивающая сила направлена перпендикулярно поверхности раздела твердой и жидкой фазы, то трещина может возникнуть, когда образуются две твердые границы раздела, а для этого необходимо преодолеть молекулярные силы сцепления между жидким расплавом и кристаллами

Учет действия массовых сил на критические значения критериев пористости

Для определения зависимости значений элементов реологической модели при изменении плотности смеси была проведена серия из 11 параллельных опытов. В каждом опыте осуществлялось многократное на-гружение смеси с помощью груза массой 10 кг, скорость которого в момент удара не превышала 1м/с. В результате проведения экспериментов были получены диаграммы т-1 и u при различной плотности смеси. Плотность смеси в процессе каждого эксперимента изменялась в пределах 1350 ... 1550 кг/м . Значение плотности смеси 1350 кг/м объясняется уплотняющим действием со стороны цилиндра 2 и поршня 1 эксперимен-тальной установки. Значение плотности смеси 1550 кг/м объясняется тем, что при большой плотности образца смеси на вид диаграмм т-1 и u накладывалась высокочастотная составляющая от датчиков перемещения, что приводило к невозможности использования этих диаграмм для дальнейшей обработки.

В экспериментах использовалась высокопрочная бентонитовая смесь, влажность которой выдерживалась в пределах 3,1 ...3,2 %.

Экспериментальные данные были обработаны по методике, изложенной в п.2.3 и на Рис.2.18 показаны полученные результаты.

Результаты экспериментов Анализ результатов говорит о том, что изменение значений элементов реологической модели носит нелинейный характер. Зависимости, представленные на Рис.2.18, получены при динамическом нагружении. Из литературы [71, 21, 61] известно, что при изменении скорости нагружения может изменяться предел пластичности. Так, в работе [71], эта зависимость представлена в виде:

где Jcm - статический предел пластичности; уд - динамический предел пластичности; п и D - константы. Следует однако отметить, что возрастание уд с увеличением скорости нагружения отмечено не для всех материалов. Так, в работе [21, стр.272] говорится о том, что «наиболее важным является мера обоснованности предположения о том, что для тех конкретных материалов, которые его интересуют, при ударном нагружении конструкции предел упругости выше, чем при квазистатическом на-гружений». Термин «предел упругости» в нашем случае соответствует ад.

В связи с этим были проведены эксперименты для определения (7ст при статическом нагружении. Сравнивая полученные значения (на Рис.2.18 значения уст показаны крестиками) можно отметить, что существенного отличия нет. Таким образом, при расчете уплотнения смеси при скоростях нагружения порядка 1 м/с (что соответствует большинству способов уплотнения), значение т можно принимать независимо от характера внешней нагрузки.

На основе экспериментальных данных, представленных на Рис.2.18 и математической модели вида Y = а ех, была получена функциональная зависимость между значениями элементов реологической модели и плотностью смеси в виде:

Прежде чем использовать полученные зависимости, необходимо провести их статистический анализ. Формально процедура проверки гипотезы о том, что полученные математические модели адекватно описывают экспериментальные данные, состоит в следующем [72]. Для каждой из зависимостей (2.16) ...(2.20) необходимо вычислить значение критерия Фишера Fa и сравнить его с табличным значением F{yl,v2,a), здесь а - уровень значимости, обычно его принимают равным 0,05; vl - число степеней свободы числителя; v2 - число степеней свободы знаменателя. Если Fa F{yl,v2,a), то принятые зависимости считаются значимыми. В нашем случае vl = 1, значение v2 определяется по формуле v2 = N - 2, где N - количество точек, по которым определялись значения элементов реологической модели смеси. Из Рис.2.18 берем значение для N равное 5 (эта цифра со-ответствует значениям р0 1350, 1400,1450 ,1500 и 1550 кг/м3). Вычисление

Fa проводилось с помощью статистической программы «STAT4» на ЭВМ. Табличное значение F(vl,v2,a) при vl = 1, v2 = 3 и а = 0,05 равно 10,13. Значения Fa для зависимости (2.16) равно 11343197409,82; для зависимости (2.17) Fa = 14035071400,6; для (2.18) Fa = 159448963,6; для (2.19) Fa = 330166711,16 и для (2.20) Fa = 2004318012,16. Таким образом, все значения Fa превышают табличные значения и полученные зависимости (2.16) адекватно описывают экспериментальные данные.

Похожие диссертации на Развитие научных и технологических основ получения фасонных литых заготовок в песчаных формах без усадочных дефектов и горячих трещин