Содержание к диссертации
Введение
1 Математическое моделирование для прогнозов влияния строительства крупных водохранилищ на гидрологический режим рек
1.1 Изменение гидрологического режима рек при строительстве крупных водохранилищ
1.2 Математическое моделирование физико-химических процессов в водохранилищах
1.3 Математическое моделирование гидрологического режима нижних бьефов
1.4 Прикладное программное обеспечение для гидрологических расчетов
2 Моделирование гидрофизических процессов в глубоких стратифицированных водохранилищах
2.1 Состояние проблемы 51
2.2 Одномерная вертикальная гидротермическая модель стратифицированного водохранилища
2.3 Модель селективного оттока воды из водохранилища 60
2.4 Моделирование вертикального турбулентного обмена с использованием алгебраических уравнений для напряжений Рейнольдса
2.5 Моделирование роста-таяния ледяного покрова 76
2.6 Методы численного решения задачи 83
2.7 Результаты численных расчетов и их обсуждение
2.7.1 Прогноз ледотермического режима крупного горного водохранилища на р. Катунь
2.7.2 Прогноз ледотермического режима крупного равнинного водохранилища на р. Томь
2.8 Основные выводы по Главе 2 104
3 Моделирование гидроледотермических процессов в нижних бьефах гидроузлов
3.1 Ледотермические процессы в нижних бьефах гидроузлов
3.2 Модель формирования полыньи в нижних бьефах гидроузлов
3.3 Модель переноса шуги с учетом ее видового состава
3.4 Методы численного решения задачи
3.5 Апробация численной гидроледотермической модели на расчетах нижних бьефов действующих гидроузлов
3.6 Прогноз изменения ледотермического режима сибирских рек в нижних бьефах проектируемых гидроузлов
3.6.1 Ледотермический режим р. Катунь в нижнем бьефе Катунской ГЭС
3.6.2 Формирование полыньи в нижнем бьефе Крапивинского гидроузла на р. Томь
3.7 Основные выводы по Главе 3
4 Прогнозирование физико-химических процессов на зарегулированных участках рек
4.1 Трансформация твердого речного стока
стратифицированным водохранилищем
4.1.1 Характеристика проблемы
4.1.2 Одномерная вертикальная модель процесса седиментации в стратифицированном водохранилище
4.1.3 Методы численного решения задачи
4.1.4 Расчет трансформации твердого речного стока р. Катунь в результате строительства водохранилища
4.2 Модель миграции растворенной примеси в глубоком
водохранилище
4.2.1 Характеристика проблемы
4.2.2 Модель миграции растворенной примеси в системе водохранилище-затопленные почвы
4.2.3 Метод численного решения задачи 169
4.2.4 Прогноз миграции растворенной примеси в водохранилище проектируемой Катунской ГЭС
4.3 Прогноз кислородного режима крупных водохранилищ 174
4.3.1 Характеристика проблемы 175
4.3.2 Математическая модель кислородного режима глубокого стратифицированного водохранилища
4.3.3 Метод численного решения задачи 184
4.3.4 Расчет кислородного режима проектируемого водохранилища
4.4 Основные выводы по Главе 4 188
5 Прогноз изменения состояния водной среды в реке нижняя тунгуска при строительстве эвенкийского водохранилища
5.1 Специфические проблемы трансформации гидрологического режима реки Нижняя Тунгуска при строительстве Эвенкийского водохранилища
5.2 Прогноз гидрологического режима Эвенкийского водохранилища
5.2.1 Моделирование процессов тепло- и массопереноса в водохранилище
5.2.2 Оценка влияния затопленной растительности на кислородный режим водохранилища
5.3 Моделирование физико-химических процессов в нижнем бьефе Эвенкийской ГЭС
5.3.1 Прогноз ледотермического режима реки Нижняя Тунгуска на участке нижнего бьефа
5.3.2 Транспорт растворенных солей в нижнем бьефе ЭГЭС 212
5.4 Основные выводы по Главе 5 214
6 Моделировние и экпериментальные исследования физико-химических процессов в теленком озере
6.1 Телецкое озеро как объект исследований 219
6.2 Натурные исследования физико-химических процессов в Телецком озере в 2010-2013 гг.
6.3 Моделирование гидроледотермического режима Телецкого озера
6.4 Моделирование кислородного режима Телецкого озера 246
6.5 Сопоставительные расчеты гидротермических процессов по моделям разной размерности
6.6 Основные выводы по Главе 6 254
7 Моделирование гидроледотермических процессов в нижних бьефах гэс для решения задач устойчивого водообеспечения (на примере новосибирского гидроузла)
7.1 Объект исследования 258
7.2 Численная модель гидроледотермических процессов 262
в нижнем бьефе Новосибирского гидроузла
7.3 Расчеты уровня воды в створе речного водозабора НФС-5 266
7.4 Основные выводы по Главе 7 274
Заключение 276
Литература
- Математическое моделирование физико-химических процессов в водохранилищах
- Моделирование вертикального турбулентного обмена с использованием алгебраических уравнений для напряжений Рейнольдса
- Модель формирования полыньи в нижних бьефах гидроузлов
- Одномерная вертикальная модель процесса седиментации в стратифицированном водохранилище
Математическое моделирование физико-химических процессов в водохранилищах
Сооружение водохранилищ связано со строительством плотин. Из всех инженерных гидротехнических сооружений плотины оказывают самое заметное воздействие на водную среду. Существовавшая до начала гидростроительства на участке створа плотины речная экосистема была результатом продолжительного по времени процесса ее развития. Возведение плотины приводит к появлению двух новых экосистем - самого водохранилища и нижнего бьефа. Влияние строительства плотины часто прослеживается до эстуария или устья реки. Новое равновесное состояние возникших экосистем, очевидно, наступит по прошествии неопределенного, но весьма длительного периода времени. Можно утверждать, что при современном уровне прогнозирования некоторые последствия гидростроительства являются непредсказуемыми с достаточной степенью вероятности или просто не учтенными [Российский, 1972; Водохранилища..., 1986; Авакян, 1999; Эделыптейн и др., 2004].
Тем не менее, многие негативные последствия крупного гидростроительства можно предотвратить или минимизировать, если на стадии разработки технического проекта ГЭС принимать соответствующие научно обоснованные инженерные решения. Для этого необходимо иметь достоверный прогноз развития гидрологических процессов на зарегулированных участках реки, позволяющий судить о возможных изменениях состояния водной среды.
Негативное влияние от сооружения водохранилищ подразделяется с определенной долей условности на четыре вида воздействий: физическое, химическое, биологическое и социально-экономическое. Под физическим воздействием понимается изменение гидроледотермического режима реки и стока речных наносов, затопление и подтопление территорий, влияние на климат и т.д. Химическое воздействие подразумевает задержку химического стока реки плотиной, в результате чего водохранилище может превратиться в накопитель химических элементов, формируется химическая стратификация водохранилища по глубине; изменяется гидрохимический режим реки на участке нижнего бьефа. Биологическое воздействие означает, что плотина задерживает биосток реки, возникают условия гиперцветения сине-зеленых водорослей, изменяется численность и состав рыбного стада, изменяется гидробиологический режим реки на участке нижнего бьефа из-за изменения его гидрофизического и гидрохимического режимов, ухудшаются условия самоочищения в нижнем бьефе и т.д. Гидробиологические прогнозы ввиду его сложности и зависимости от прогнозов гидрофизических и гидрохимических процессов осуществляется, как правило, на качественном уровне.
Социально-экономическое воздействие гидростроительства обусловлено потерей земельного фонда, затоплением и подтоплением территорий, изменением климата, изменением экосистем реки и т.д. Однако рассмотрение этих вопросов находится за пределами данной работы.
Получение достоверных количественных прогнозов всех последствий физико-химических воздействий проектируемого гидростроительства на состояние водной среды весьма проблематично. В настоящее время с приемлемой точностью можно прогнозировать гидрологические процессы на зарегулированных участках рек - в водохранилище и на участке нижнего бьефа, определяющие температурный режим водных объектов, содержание взвешенных в воде веществ, соленость воды и содержание растворенных газов, первоочередное значение из которых имеет кислород. Данные гидрологические процессы на участках водохранилищ и нижних бьефов следует рассматривать как процессы, определяющие абиотические факторы водной среды, влияющие на развитие возникающих в результате гидростроительства водных экосистем. Это положение относительно существенной экологической значимости ряда гидрологических процессов, протекающих в водных объектах, представляется достаточно рациональным при прогнозировании последствий сооружения водохранилищ [Стадницкий, 2002; Тимченко, 2006; Румянцев и др., 2011].
По относительной роли гидрологических процессов, определяющих абиотические факторы водной среды, некоторые из них следует считать базисными. Исходя из того, что в основе всех гидрологических процессов (гидродинамических, ледовых, гидрохимических и др.) лежит поступление, перераспределение и трансформация энергии, то прогноз годового термического режима водохранилища является базисом для изучения всех, протекающих в водных объектах процессов [Хендерсен-Селлерс и др., 1990; Бояринов и др., 1991; Показеев и др., 2002]. Иначе говоря, при описании гидрологических процессов в глубоких водохранилищах и нижних бьефах ГЭС можно использовать гидротермические модели, позволяющие учесть основные особенности рассматриваемых процессов для условий гидростроительства в Сибири.
Большинство сибирских водохранилищ, действующих и проектируемых, относятся к разряду глубоководных, для которых характерно наличие вертикальной плотностной стратификации. Меняющуюся в течение года картину плотностной стратификации глубоких водохранилищ следует рассматривать как результат взаимодействиях различных гидрологических процессов, как гидрофизических, так и гидрохимических.
Термогидродинамические процессы в глубоком сибирском водохранилище характеризуются большим разнообразием. Зимой водохранилище покрыто льдом и охлаждается при наблюдаемой обратной температурной стратификации. Стоковые течения очень слабые - несколько сантиметров в секунду. После схода льда водохранилище начинает нагреваться. Прибрежная мелководная часть водохранилища прогревается быстрее, чем глубоководная, что ведет к образованию термобара -вертикального фронта, разделяющего водоем на две части, имеющие разный гидрологический режим. Постепенно термобар продвигается к центру водохранилища, где затем исчезает. Образование термобара объясняется максимумом плотности пресной воды при температуре около 4 С. Зону термобара можно определить по скоплению мусора, а также фито- и зоопланктона. Удельная биомасса фито- и зоопланктона в зоне термобара в несколько раз выше, чем в других районах водохранилища.
После достижения состояния весенней гомотермии начинается следующий характерный этап в развитии термической структуры водоема -нагревание в условиях прямой температурной стратификации с образованием термоклина - горизонтальной границы, которая делит водохранилище на два квазиоднородных слоя: эпилимнион (верхний слой) и гиполимнион (нижний слой). Существование термоклина приводит к появлению мощных внутренних волн на границе раздела водных масс с разной плотностью. Неустойчивость внутренних волн ведет к образованию вихрей разного масштаба от нескольких сантиметров до нескольких километров. Обрушение очень высоких крутых внутренних волн ведет к появлению вихрей с размерами несколько сантиметров, которые внутри водоема на границе раздела вод с разной плотностью образуют своеобразные «туннели», по которым происходит перенос тепла между слоями, изолированными друг от друга термоклином. Летом и осенью в глубоком сибирском водохранилище наблюдается общий циклонический круговорот. Наряду с этим крупномасштабным вихрем существуют среднемасштабные вихри: топографические, обусловленные влиянием формы дна и берегов, и инерционные, возникающие под действием силы Кориолиса, период которых зависит от широты расположения водоема. Так, на широте озера Байкал он равен 15 часам.
Во время ветра на поверхности водохранилища возникают полосы, направленные вдоль направления ветра. Это полосы конвергенции, которые являются проявлением циркуляции Ленгмюра, имеющих горизонтальную ось вращения. В полосах также скапливается мусор, планктон и пена, позволяющие маркировать место их нахождения. Вихри Ленгмюра - основной механизм перемешивания верхнего наиболее продуктивного слоя водохранилища, где происходят процессы фотосинтеза, разбавления сточных вод, выравнивания температур и т.д.
Моделирование вертикального турбулентного обмена с использованием алгебраических уравнений для напряжений Рейнольдса
Одномерные вертикальные модели формирования непрерывной вертикальной стратификации (модели термоклина) в глубоких слабо проточных водоемах - озерах и водохранилищах, впервые рассмотрены в работах Дейка Дж.М.К, Российского К.И., Харлемана Д.Р.Ф., ХубераВ.С. и других авторов [Российский, 1975; Dake et al., 1969; Huber et al., 1972; Spalding et al., , 1976]. Данные исследования базируются на предположении, что изотермические слои в таких водоемах близки к горизонтальным. Такое допущение позволяет свести задачу к решению системы уравнений тепло- и массопереноса с одной пространственной координатой. При этом гидротермическая модель стратифицированного водохранилища (т.н. 1DV-модель) учитывает приток и отток воды, а также изменение по глубине площади его горизонтального сечения. Исследования в данном направлении были продолжены как работами зарубежных авторов [Sundaram et al., 1971, 1972; Markofsky et al, 1973; Ryan et al., 1973; Harleman, 1982], так и отечественных [Игнатова и др., 1979; Васильев и др., 1991; Зиновьев и др., 1991; Бочаров и др., 19926].
Квон В.И. подразделил модели термоклина с определенной долей условности на три группы [Игнатова и др., 1979]. К первой группе относятся так называемые интегральные модели, где вертикальное распределение температуры воды задавалось [Калацкий, 1975; Rodi, 1987]; в следующей группе моделей использовались постоянные коэффициенты турбулентного обмена и рассматривались различные механизмы, приводящие к формированию термоклина [Российский, 1975; Needier, 1967; Dake et al, 1969; Tucker et al., 1977; Hondzo et al, 1991].
В моделях третьей группы [Марчук и др., 1976; Sundaram et al., 1971, 1972; Mellor et al., 1975; Omstedt, 1983] коэффициенты турбулентной температуропроводности принимаются зависящими от коэффициентов турбулентного обмена через число Ричардсона. В работах [Игнатова и др., 1979; Елисов, 1985; Svensson et al., 1980; Omstedt et al, 1984] коэффициенты вертикального турбулентного обмена определяются с привлечением уравнений турбулентной энергии. Усовершенствованию методов численного моделирования гидроледотермических процессов в озерах и водохранилищах посвящены работы [Васильев и др., 1991; Бочаров и др., 19926; Зиновьев и др., 1991, 1998; Zinoviev et al., 1990; Bocharov et al., 1991; Rodi, 1987], в которых обсуждается использование одномерной вертикальной (1DV) схематизации при описании гидрологических процессов в глубоких стратифицированных водоемах. 2.2 Одномерная вертикальная гидротермическая модель стратифицированного водохранилища
В настоящее время одномерное вертикальное приближение достаточно широко используется при моделировании гидрофизических процессов в глубоких водоемах - озерах и водохранилищах [Orlob, 1982]. Применяемые при описании гидротермического режима глубоких водохранилищ lDV-модели достоверно воспроизводят один из основных наблюдаемых гидрофизических процессов в таких водоемах - формирование термоклина. Важным представляется вопрос о дальнейшем развитии математических моделей, описывающих формирование вертикальной плотностной (температурной) стратификации глубоких замерзающих водохранилищ [Васильев, 1999].
То, что одномерная вертикальная пространственная схематизация в существенной мере отражает специфику происходящих физико-химических процессов в глубоких стратифицированных водоемах, подтверждается натурными данными. Во многих водоемах, в том числе глубоководных водохранилищах, прослеживается пространственная неоднородность распределения показателей состояния водной среды (в первую очередь, температуры) в вертикальном направлении; градиенты изменения этих показателей по вертикали на несколько порядков выше, чем по горизонтали [Хендерсон-Селлерс, 1987]. В таких случаях естественно полагать, что поведение взвешенных и растворенных веществ во многом определяется термогидродинамическими особенностями исследуемого глубокого водного объекта, наиболее существенные из которых могут быть удовлетворительно описаны в рамках lDV-модели. Ориентируясь именно на такие объекты, а глубокие сибирские водохранилища относятся к их числу, ограничимся рассмотрением пространственной неоднородности гидрологических процессов только по вертикали.
Предполагая относительную однородность гидрофизических характеристик глубокого стратифицированного водоема по горизонтальным сечениям, можно провести осреднение определяющих уравнений по этим сечениям. Для поля температур T(f,t) в явном виде процедура осреднения выглядит следующим образом: скорости). Такое осреднение всегда можно выполнить без каких-либо дополнительных предположений [Mauersberger, 1982; Modeling ..., 1986]. Однако при этом возникают определенные проблемы, связанные с аппроксимацией ненулевого значения среднего от произведения отклонений скорости и температуры от своих средних значений (второе слагаемое в (2.2)). По своему физическому смыслу это слагаемое является вертикальной дисперсией (по аналогии с понятием продольной дисперсии в русловых течениях [Дейли и др., 1971]), которая выражается через средние величины
Поэтому его обычно считают пропорциональным градиенту средней температуры и добавляют в соответствующий диффузионный член уравнения для средних значений температуры [Дейли и др., 1971; Mauersberger, 1982; Modeling ..., 1986]. Это приводит к введению эффективного коэффициента вертикальной диффузии, отражающего вклады молекулярной и турбулентной диффузии, а также вертикальной дисперсии. Оценка данного коэффициента (калибровка по натурным данным или параметризация на основе той или иной модели турбулентного обмена) представляет собой достаточно самостоятельную проблему, выходящую за рамки поставленной задачи.
Чисто технически процедура осреднения сводится к интегрированию исходных трехмерных дифференциальных уравнений с использованием теоремы Гаусса-Остроградского по горизонтальным сечениям водоема. Ее реализация дает одномерное уравнение теплопереноса в водной толще. При формулировке замкнутой математической lDV-модели гидротермических процессов в глубоком стратифицированном водохранилище также используются гидростатическое приближение, двухпараметрическая модель турбулентности и упрощающее предположение об отсутствии теплообмена между водной толщей и дном водоема [Игнатова и др., 1979; Nagano et al., 1987; Васильев и др., 1991; Бочаров и др., 19926]. Для выполнения законов сохранения на разностном уровне при моделировании многолетних изменений гидротермического режима водохранилищ (в том числе законов сохранения массы и тепла) система определяющих нелинейных уравнений записывается в дивергентном виде [Самарский, 1989].
Модель формирования полыньи в нижних бьефах гидроузлов
В процессе строительства и эксплуатации гидротехнических сооружений в суровых климатических условиях Сибири возникают разнообразные ледовые проблемы, требующие своего решения [Шаталина и др., 2013]. Многие из них связаны с расчетами и прогнозами температурного и ледового режимов нижних бьефов гидроузлов.
В основе большинства отечественных математических моделей динамики полыньи в нижних бьефах ГЭС и гидроузлов лежит физическая модель ледотермических явлений, предложенная Пеховичем А.И. [Пехович и др., 1980; Пехович, 1983]. Согласно этой модели при схематизации ледотермических явлений в открытом водотоке выделяются три основных ледотермических режима: -режим 1 (зимний) - режим похолодания, при котором происходит уменьшение длины полыньи, т.е. происходит наступление кромки ледяного покрова; -режим 2 (зимний) - режим потепления, при котором происходит увеличение длины полыньи, т.е. происходит отступление кромки ледяного покрова; - режим 3 - кромка ледяного покрова не перемещается.
По физике ледотермических явлений Пехович А.И. делит водоток по длине на определенные участки. При наличии 1-го режима различаются 7 участков: 1-й участок - участок охлаждения воды до 0 С (от створа плотины до створа нулевой изотермы); 2-й участок - участок переохлаждения (от створа нулевой изотермы до створа начала шугообразования); 3-й участок - участок зарождения кристаллов льда (от створа начала шугообразования до створа максимального переохлаждения); 114 4-й участок - участок сброса переохлаждения (от створа максимального переохлаждения до створа наибольшей интенсивности шугообразования); 5-й участок - участок от створа наибольшей интенсивности образования шуги до створа окончания повышения температуры воды; 6-й участок - участок полного покрытия поверхности воды шугой (от створа наибольшей интенсивности шугообразования до створа начала образования устойчивого ледяного покрова); 7-й участок - участок устойчивого ледяного покрова (от створа кромки ледяного покрова). Во время 2-го и 3-го режимов имеют место только два участка: 1-й - от начала водотока (створ плотины) до створа кромки льда; 2-й - под ледяным покровом.
Таким образом, с учетом физики ледотермических явлений при каждом ледотермическом режиме водоток делится по длине на различное количество участков (от семи до двух). Поэтому комплексная математическая модель для описания ледотермического режима нижних бьефов ГЭС и гидроузлов должна включать в себя следующее: - Определение СТВОра НулеВОЙ ИЗОТерМЫ Хо; - определение длины участка переохлаждения, на котором температура воды Tw 0 С, но лед еще не образуется (участок 2); - определение степени покрытия водной поверхности шугой /?; - расчет расхода шуги Qt; - расчет начального положения кромки ледяного покрова; -расчет времени продвижения кромки ледяного покрова вверх по течению; - расчет конечного положения кромки ледяного покрова.
На уровне балансовых соотношений, выраженных в виде обыкновенных дифференциальных уравнений, модель ПеховичаА.И. была реализована в работе [Пехович и др., 1980]. В дальнейшем физико-математическая модель расчета ледотермического режима нижнего бьефа ГЭС доработана на случай 115 отступления кромки ледяного покрова вниз по течению [Трегуб, 1984], расширена на случай изучения влияния тепловых сбросов на ледотермику нижнего бьефа [Ляпин и др., 1985, 1988]. На основе данной модели была изучена роль метеоусловий в формировании ледотермического режима нижних бьефов [Трегуб, 1986], рассмотрены вопросы возможности управления ледотермическим режимом нижних бьефов ГЭС [Ляпин и др., 1986]. Результаты работ [Пехович и др., 1980; Трегуб, 1984] положены в основу методики расчета длины полыньи в нижних бьефах [Рекомендации ..., 1986].
Дальнейшее развитие физико-математической модели динамики ледяного покрова в нижних бьефах ГЭС Пеховича А.И. и Трегуб Г. А. выполнено в работах [Атавин и др., 2000; 2014; Белолипецкий и др., 1990, 1994; Atavin et al., 1993, 1996]. В перечисленных работах для описания нестационарных гидроледотермических процессов в нижних бьефах ГЭС и гидроузлов используется система дифференциальных уравнений в частных производных. Рассматриваются математические модели, описывающие различные гидрологические процессы на зарегулированных участках рек: гидродинамическая модель нестационарного руслового потока и модели термодинамических процессов. Различие моделей, используемых разными авторами, в основном заключается в используемых аппроксимациях тепловых потоков и выборе привлекаемых эмпирических коэффициентов.
Как отмечалось выше, целью выполненных автором работ являлось развитие методов математического моделирования гидродинамических и термодинамических процессов на зарегулированных участках рек для получения надежных количественных оценок влияния гидростроительства на состояние водной среды. С этих позиций в достаточно общей постановке сформулирована задача описания взаимосвязанных гидро- и ледотермических процессов, определяющих формирование полыньи в нижних бьефах ГЭС и гидроузлов. Ниже рассматривается комплекс математических моделей, описывающих гидроледотермический режим зарегулированного участка реки [Атавин и др., 2000; Atavin et al, 1993]. Базовая модель этого комплекса 116 модель гидравлического режима нестационарного руслового потока. В состав комплекса входят также модели температурного режима реки, образования и переноса шугового материала, движения кромки льда, роста-таяния ледяного покрова. Приведем математическую постановку задачи описания этих процессов. Область определения задачи Q={(xJ): 0 x L3 0 t tk} разбивается на подобласти Qi, Ог и Оз (Q = Qi LJ Q2 u Q3) с учетом специфики определяющих физических процессов следующим образом (рисунок 3.1): на пространственно-временной подобласти Qi рассматривается нестационарное течение в открытом русле в отсутствие ледовых процессов; подобласти Q2 отвечает участок реки, где происходит шугообразование; участку реки под ледяным покровом соответствует подобласть Оз
Одномерная вертикальная модель процесса седиментации в стратифицированном водохранилище
Создание уникального Эвенкийского водохранилища длиной только по основному руслу реки Нижняя Тунгуска 1229 км (основной (первый) проектный вариант строительства) обуславливает возможное проявление значимых водно-экологических проблем, которые требуют серьезных научных проработок [Эвенкийская ..., 2009]. Во многом они обусловлены следующими обстоятельствами. Строительство гидроузла (по 1-му варианту) планируется на 120-м км от устья реки Н.Тунгуска - правого притока Енисея. Климат региона строительства резко континентальный; среднегодовая температура воздуха в районе строительства минус 8,5 С, ее минимальные зимние значения достигают минус 63 С, максимальные летние - плюс 37 С.
Современный гидрологический режим реки Н. Тунгуска характеризуется неравномерностью стока, резкими колебаниями уровня воды (до 30 м) в паводок. Среднемноголетний сток реки в створе на 120-м км от ее устья составляет 112 км3; максимальный расчетный расход - 70 тыс. м3/с [Ресурсы ..., 1973]. В проектных материалах как наиболее оптимальная величина принята подпорная отметка 200 м; при этом высота плотины составляет около 200 м. Строительство крупного водохранилища объемом до 409 куб. км может вызвать серьезные специфические изменения гидрологического режима и качества воды на зарегулированных участках реки.
При высоте плотины около 200 м следует ожидать формирования вертикальной плотностной стратификации в водохранилище. Ряд важных вопросов изменения качества воды при строительстве водохранилища обусловлен достаточно высоким естественным уровнем минерализации поверхностного стока в районе проектируемого гидростроительства и большим количеством затопляемой древесно-кустарниковой растительности.
Согласно 2-му варианту положение створа плотины ГЭС - на расстоянии 59,5 км от устья р. Нижняя Тунгуска, отметка НПУ - 110,00 мБС. Длина водохранилища при НПУ для 2-го варианта равна 695,5 км; его объем -48,51 км3.
Априори можно заключить, что анализ многих серьезных водно-экологических проблем, обусловленных строительством в чрезвычайно суровых климатических условиях ЭГЭС, в большой степени опирается на прогноз ледотермического режима Эвенкийского водохранилища и нижнего бьефа ГЭС. Большую часть года Эвенкийское водохранилище будет покрыто льдом и только в течение нескольких летних месяцев будет свободно от ледяного покрова. Увеличение теплового стока Н. Тунгуски в створе плотины после строительства водохранилища будет существенным, поэтому в зимние месяцы следует ожидать появления полыньи в нижнем бьефе ЭГЭС. Поскольку изменения гидроледотермического режима реки Н. Тунгуска на ее зарегулированных участках будут весьма значительными, изучение и прогнозирование процессов тепломассопереноса в водохранилище и нижнем бьефе ЭГЭС являются первоочередными задачами для анализа состояния водной среды Н.Тунгуски на перспективу гидростроительства [Васильев, 1999а].
В случае Эвенкийского водохранилища нет особой необходимости использовать количественные оценки его гидробиологического режима. Использование метода аналогии позволяет предположить, что проектируемое водохранилище будет водоемом с низкой биологической продуктивностью. При сохранении имеющихся природных условий и отсутствии дополнительной антропогенной нагрузки водохранилище по степени развития биоценозов будет характеризоваться как «олиготрофный» водоем. Важным является то, что для глубоких водохранилищ, как правило, характерно формирование вертикальной плотностной (обычно, температурной) стратификации. Наличие термоклина существенно затрудняет процесс эффективного перемешивания водных масс по глубине и создает, в частности, условия для вертикальной стратификации содержания растворенных примесей и газов. Так, в глубоких термически стратифицированных водохранилищах всегда наблюдается вертикальная стратификация растворенного кислорода.
Кислородный режим является одним из основных показателей экологического состояния водоемов, поскольку практически все внутриводоемные химические и микробиологические процессы протекают с участием или в присутствии растворенного кислорода. Дефицит кислорода приводит, как правило, к структурной перестройке всего цикла круговорота веществ в водоеме. К примеру, снижение концентрации растворенного кислорода ниже допустимых норм отрицательно сказывается на ихтиофауне, появляются заморные явления и, как следствие, снижается рыбная продуктивность водохранилищ. Для корректного прогнозирования изменения содержания растворенного кислорода в воде при строительстве крупных и глубоких водохранилищ учет формирования вертикальной плотностной стратификации принципиально важен [Хендерсон-Селлерс, 1987].
При количественной оценке изменения гидрологического режима реки Н. Тунгуска при строительстве ЭГЭС одними из самых важных вопросов являются уровень минерализации и концентрация растворенного кислорода в Эвенкийском водохранилище [Предварительный ..., 2008]. Высокий уровень занесенное зоны затопления в случае сооружения плотины ЭГЭС обуславливает постановку и решение вопроса о влиянии затопления большого объема древесно-кустарниковой растительности на качество воды в водохранилище, в т.ч. на его кислородный режим. Достаточно высокий естественный уровень минерализации поверхностного стока в районе гидростроительства требует оценки содержания растворенных солей в воде Эвенкийского водохранилища. Без выявления общей картины распределения минерализации вод в водохранилище в условиях возникновения плотностной стратификации по глубине, обусловленной, прежде всего, термическим фактором, невозможно определить количественные характеристики качества этих вод, определяющие их пригодность для целей водоснабжения населения, а также степень минерализации воды, сбрасываемой из водохранилища в нижний бьеф [Васильев и др., 2009а].