Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Применение метода виртуального источника сейсмических волн для мониторинга резервуара Александров Дмитрий Владимирович

Применение метода виртуального источника сейсмических волн для мониторинга резервуара
<
Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара Применение метода виртуального источника сейсмических волн для мониторинга резервуара
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Александров Дмитрий Владимирович. Применение метода виртуального источника сейсмических волн для мониторинга резервуара: диссертация ... кандидата физико-математических наук: 25.00.10 / Александров Дмитрий Владимирович;[Место защиты: Санкт-Петербургский государственный университет].- Санкт-Петербург, 2014.- 104 с.

Содержание к диссертации

Введение

1 Методы сейсмической интерферометрии 13

1.1 История развития сейсмической интерферометрии 13

1.2 Метод виртуальных источников в акустической среде 21

1.2.1 Теорема взаимности корреляционного типа 21

1.2.2 Основное уравнение метода виртуальных источников 23

1.3 Метод многомерной деконволюции 29

1.4 Метод деконволюции-конволюции 34

2 Результаты численного моделирования 37

2.1 Скоростная модель и геометрия наблюдений 38

2.2 Построение изображения среды 40

2.2.1 Построение сейсмограммы виртуального источника 41

2.2.2 Влияние апертуры источников 44

2.2.3 Влияние длины временного окна 46

2.2.4 Разделение волнового поля на восходящее и нисходящее 46

2.3 Улучшение воспроизводимости данных с помощью МВИ 52

2.3.1 Явления, ухудшающие воспроизводимость измерений 54

2.3.2 Изменения геометрии наблюдений 55

2.3.3 Изменение контакта источника колебаний с грунтом 59

2.3.4 Вариации упругих параметров приповерхностной части модели 61

2.4 Улучшение воспроизводимости данных с помощью деконволюции конволюции 65

2.4.1 Изменение контакта источника колебаний с грунтом 66

3 Полевые данные 69

3.1 Практическая реализация алгоритмов 72

3.2 Результаты применения МВИ и МДК 74

3.3 Численное моделирование опорной съемки 80

Заключение 88

Благодарности 89

Список сокращений 90

Список рисунков 91

Список таблиц 96

Литература 97

Метод виртуальных источников в акустической среде

За последние десятилетия произошел качественный рывок в развитии разведочной геофизики. Постоянно растущий спрос на источники энергии, в частности, углеводороды, стимулировал быстрое развитие методов разведки и добычи полезных ископаемых. Большую роль в развитии этой области науки, как впрочем, и многих других, сыграло появление электронных вычислительных машин и быстрое увеличение их мощности. Одним из новых методов разведки стал метод виртуальных источников сейсмических волн. Его суть заключается в преобразовании сейсмических данных путем кросс-корреляции сейсмограмм. Подобные методы принадлежат к относительно молодому разделу научного знания под названием «сейсмическая интерферометрия».

В 1968 году Джон Клербо (Jon Claerbout) первым применил сейсмическую интерферометрию для изучения приповерхностной части геологического разреза [20]. Ныне профессор Стэнфордского университета, со второй половины XX века Клербо является одним из ведущих геофизиков. Одним из первых он предложил использовать компьютеры для обработки и фильтрации сейсмических данных. Клербо является основателем Стэнфордского Исследовательского Проекта (Stanford Exploration Project) – первого геофизического исследовательского консорциума, который финансировался нефтегазовыми компаниями. Консорциум SEP внес большой вклад в развитие методов построения 3-х и 4-хмерных изображений земли с использованием отражений сейсмических волн.

В своей работе Клербо предложил прямой (не итеративный) метод построения изображения слоистой акустической среды на основании сейсмограммы, полученной от приемников, расположенных на дневной поверхности, и заглубленного источника [20]. Он продемонстрировал, что автокорреляция таких данных соответствует волновому полю от источника на поверхности (и его обращенной по времени части). Таким образом, задача о прохождении волн через акустическую слоистую среду была преобразована в задачу об отражении волн от границ слоев. Фактически в этой работе впервые прозвучала идея о преобразовании данных, полученных по одной схеме измерения, в данные, соответствующие другой схеме измерения. Применительно к практике результат, полученный Клербо, означал, что продолжительные пассивные наблюдения без использования искусственного источника, т.е. записи «шума», позволяют построить сейсмограммы, соответствующие традиционным методам сейсморазведки. Под шумом в данном случае понимаются не помехи, связанные с работой приборов, а волновое поле, многократно отраженное и рассеянное на неоднородностях среды и имеющее примерно равную интенсивность в любом направления.

Позднее Клербо обобщил свой вывод для приемников на разных удалениях в трехмерной неоднородной среде. Другими словами, коррелируя записи «шума», измеренные в двух точках на поверхности, можно создать картину волнового поля, которое было бы записано одним приемником, если бы источник находился в положении другого. После появления этой концепции было сделано несколько попыток реализации идеи на практике с полевыми данными. Одни более успешные, другие – менее. Интересно, что первые убедительные результаты были получены сейсмологами, изучавшими строение Солнца, а не Земли [62].

В 2001 году Р. Вивер (R. Weaver) и О. Лобкис (O. Lobkis) продемонстрировали справедливость предположения Клербо для ультразвуковых волн, распространявшихся в алюминиевом блоке [80]. Они усреднили случайный шум на длительном промежутке времени и получили импульсный сигнал между двумя приемниками, расположенными внутри блока. Позднее они доказали предположение Клербо, правда при этом они считали волновое поле, создаваемое источниками шума, диффузионным, то есть приходящим со всех сторон и с одинаковой средней амплитудой. В реальных условиях это свойство может быть обеспечено многократным рассеянием волн в теле с нерегулярной ограничивающей поверхностью, многократным рассеянием на случайно распределенных неоднородностях, или случайным распределением источников некоррелированного шума. Тем не менее, такое требование к волновому полю являлось серьезным ограничением области применения сейсмической интерферометрии.

В 2004 году К. Вапенаар (K. Wapenaar), профессор технологического университета в Дельфте, доказал предположение Клербо, обобщенное на трехмерную среду (акустическую и упругую) без необходимости случайного распределения неоднородностей, источников или диффузионности волнового поля [72]. Его вывод основывался на теореме взаимности и применялся к неоднородной анизотропной среде без затухания. Для создания импульса между двумя приемниками записывались отклики среды в результате воздействия независимых источников. В случае источников некоррелированного шума выражение сокращалось до простой корреляции записей, полученных в этих приемниках. В двух работах 2003 года А. Дероуд (A. Derode) показал, как принципы интерферометрии связаны с обращением волнового фронта [41]. Он продемонстрировал интуитивный и элегантный вывод, целиком основанный на физических, а не математических аргументах. Было показано как волновое поле, излучаемое точечным источником, может быть обращено во времени и сфокусировано в точке, где этот источник был расположен. Такая операция математически оказывается эквивалентна кросс-корреляции, используемой в сейсмической интерферометрии, при условии, что источники расположены на границе среды, а не внутри нее.

В разведочной геофизике исследования с использованием кросс-корреляции сейсмических трасс получили толчок после того как Джерард Шустер (Gerard Schuster) принял участие в SEP в 2000 году. Он применил корреляционный метод не только к пассивным данным, но и к сейсмическим данным от искусственных источников. Шустер предложил алгоритм интерферометрического построения изображения, объединив кросс-корреляцию и сейсмическую миграцию. Он подкрепил свой метод элегантной теорией, основанной на анализе стационарной фазы [33; 54]. Его коллеги из университета штата Юта успешно применили этот метод к различным типам данных, включая записи вертикального сейсмического профилирования и данные, полученные в процессе бурения. В конечном итоге, исследования Шустера убедили скептиков в преимуществах его метода по сравнению с традиционным подходом к построению изображения среды по сейсмограммам вертикального сейсмического профилирования. Тем не менее, несмотря на надежность метода, имелись и свои недостатки: значительная часть многократных отражений обрабатывалась неверно и порождала артефакты после кросс-корреляции.

В это же время исследовательская группа прикладной геофизики университета Дельфта разработала теорию, основанную на теоремах взаимности. Эта теория формально обобщила соотношения Клербо между падающим и отраженным волновым полем на случай трехмерной неоднородной акустической и упругой сред [73; 74]. Эта теория была подтверждена как численно, так и для реальных данных пассивных сейсмических наблюдений [25; 43].

Метод многомерной деконволюции

Основной причиной ухудшения воспроизводимости сейсмических данных на суше является сложность верхней части разреза (ВЧР), изменяющейся со временем. Кроме того, от съемки к съемке могут изменяться условия наблюдений как для источников сейсмических сигналов, так и для приемников. Одним из методов решения указанных проблем является заглубление источников колебаний и приемников [52]. В случае простого строения приповерхностной части среды возможно заглубление относительно недорогих датчиков и небольшого количества источников [28], однако в сложных средах возникает необходимость в более высокой кратности данных. Это требует заглубления значительного числа источников, что может оказаться экономически нецелесообразным.

Альтернативным способом улучшения повторяемости данных является метод виртуальных источников (МВИ) [13], не требующий построения опорной скоростной модели и использующий исключительно зарегистрированные сейсмические данные. В результате обработки данных согласно этому методу изменяется конфигурация схемы наблюдений. Другими словами, на основании зарегистрированного глубинными приемниками поля от источников колебаний на поверхности восстанавливается поле, отвечающее конфигурации, как если бы действительные источники были помещены в положения глубинных приемников. Источники новой конфигурации получили название виртуальных источников. МВИ показал высокую эффективность на данных наземной сейсмики [14], устраняя влияние сложной приповерхностной части среды и улучшая изображение среды.

В настоящей главе методом численного моделирования продемонстрировано, что МВИ позволяет улучшить повторяемость сейсмических данных. Для этого была создана приближенная к реальности модель, основанная на данных скважинных наблюдений в Саудовской Аравии [60]. В первой части главы исследуется сама возможность построения изображения резервуара с помощью МВИ для данной сложной модели со свободной поверхностью. Определяются оптимальные параметры метода. Во второй части рассмотрены несколько сценариев ухудшения воспроизводимости данных. В результате применения МВИ в случае вариаций параметров ВЧР, изменения положений источников или фазового спектра сигнала повторяемость сейсмических измерений улучшается. Однако в случае изменения амплитудного спектра излучаемого сигнала лучшие результаты демонстрирует МДК.

Волновое поле было получено конечно-разностным методом решения волнового уравнения упругости [35] в модели, изображенной на рис. 2.1а. В конечно-разностной схеме использовалась прямоугольная сетка с шагом 0.5 м. Шаг по времени составлял 3.6 10-5 c. Модель построена на основе данных акустического каротажа, проведенного на одном из месторождений нефти в пустыне Саудовской Аравии [60]. Резервуар, расположенный на глубине 2000 м, отделен от дневной поверхности большим количеством слоев со значительными перепадами величины акустического импеданса. Верхние 15 м модели с низкими значениями скоростей продольных и поперечных волн соответствуют песчанику.

В качестве модели вертикального вибратора на дневной поверхности использовался источник типа вертикальной силы с шагом 7.5 м. Приемники были расположены по горизонтали на глубине 30 м с интервалом 30 м и повторяли геометрию реального эксперимента (рис. 2.4). Измерялись вертикальная компонента смещения и компонента тензора напряжения . Впоследствии эти компоненты использовались для разделения волнового поля на падающее поле и восходящее поле методом суммирования аналогично Рисунок 2.1: Скоростная модель, использованная при моделировании: а – значения плотности и скоростей продольных и поперечных волн для всей модели, б – верхняя часть скоростной модели, в – траектории лучей падающих волн, приходящих на удалениях менее 2 км после отражения от резервуара. тому, как это разделение осуществляется в морской сейсморазведке [15]. Такой метод разделения предполагает, что волны распространяются преимущественно в вертикальном направлении, и теряет точность с увеличением выноса и, соответственно, увеличением угла нормали к фронту волны. Анализ распространения волн в данной модели в лучевом приближении показал, что в исследуемом диапазоне удалений от 0 до 2 км угол отклонения луча от вертикали на уровне приемников не превышает 15 (рис. 2.1в).

Большое влияние на распространение волн в данной модели оказывает наличие свободной поверхности. На рис. 2.2 представлены сейсмограммы общего пункта взрыва (ОПВ) для данной модели со свободной поверхностью и без нее. Анализ данных вертикального сейсмического профилирования по методу, описанному в работе [38], показывает, что в волновом поле присутствует значительное число многократно отраженных волн. Низкоскоростные вступления, перекрывающие отраженные волны без свободной поверхности, б – со свободной поверхностью. на удалениях более 200 м, являются приповерхностными модами, связанными с ВЧР с низкой скоростью распространения волн. В присутствии свободной поверхности возникают новые кратные волны, а также новые низкоскоростные моды (рис. 2.2б). Эти волны накладываются на сигнал, отраженный от резервуара, и оказывают влияние на его повторяемость.

Улучшение воспроизводимости данных с помощью МВИ

Значения этих параметров менялись в диапазоне 15-200 м для апертуры и 45-180 мс для временного окна. При использовании временного окна длиной 45 мс в корреляции участвовала только прямая волна, в то время как окно длиной 180 мс включало в себя несколько волн-спутников, связанных с наличием свободной поверхности. Использование минимальной апертуры по источникам (15 м) было равносильно участию пяти сейсмических трасс в кросс-корреляции при построении каждого виртуального источника (рис. 2.4). При увеличении апертуры до 200 м количество трасс возрастало до 53. Тот же диапазон изменения параметров МВИ использован в работах [11; 12], где подробно проанализировано их влияние на качество изображения среды.

Как видно из рис. 2.15, улучшение повторяемости данных происходит при использовании больших значений апертуры и длины временного окна: значение уменьшается до 8.5%. Тем не менее, для некоторых значений параметров величина превышает 12%. Изменения сейсмических трасс, вызванные вариациями параметров среды, условий излучения и схемы измерения, попадают на результирующую сейсмограмму виртуального источника несколькими путями. Часть волнового поля, Рисунок 2.16: Сейсмограммы а – полного волнового поля, зарегистрированного геофоном, и б – нисходящего поля, полученного в результате суммирования записей геофона и гидрофона. которая попадает в выбранное временное окно, содержит линейные вступления, соответствующие приповерхностным и головным волнам (рис. 2.16а). Значительная часть этой энергии остается в верхних слоях модели и распространяется горизонтально. Как упоминалось выше, такие волны наиболее чувствительны к изменению положения источников. Однако те же волны перекрывают отражения на значительных удалениях и потому влияют на оба набора данных, используемых в процессе построения сейсмограммы виртуального источника согласно формуле (1.22).

Влияние приповерхностных и головных волн на поле внутри временного окна, используемого при корреляции, можно уменьшить, разделив волновое поле на нисходящее и восходящее. Как видно из сейсмограммы на рис. 2.16б, падающее поле – вторая компонента МВИ – содержит меньше линейных вступлений, соответствующих этим типам волн, по сравнению с полным полем (рис. 2.16а). После применения МВИ и кросс-корреляции восходящего и нисходящего полей значение между суммарными разрезами исходной и модифицированной моделей не превышало 10% (рис. 2.17а). Кроме того, FK фильтрация поля позволяет удалить приповерхностные моды на больших удалениях, тем самым улучшая первую компоненту МВИ. Величина между суммарными разрезами сейсмограмм виртуальных источников, построенных на Рисунок 2.17: Зависимость между суммарными разрезами от параметров МВИ для случаев а – кросс-корреляции восходящего и падающего полей (без фильтрации) и б – кросс-корреляции полного волнового поля геофона после фильтрации и удаления приповерхностных мод. В модели 2 были изменены координаты источников. основе отфильтрованных данных, также не превышает 10%, а для некоторых параметров МВИ составляет 6.5% (рис. 2.17б). Для получения наилучшего результата следует применять оба этих метода предварительной обработки последовательно.

Изменение контакта источника колебаний с грунтом Изменение контакта источника с грунтом моделировалась с помощью случайного фазового сдвига волнового пакета, излучаемого источником. В среднем величина этого сдвига составляла 21 градус. На рис. 2.18а приведен пример изменения фазы для одной сейсмической трассы. Величина между суммарными разрезами, полученными традиционным путем для сейсмограмм с фазовой вариацией и без нее, составляла 8.5% (рис. 2.18б). Отметим, что очевидной зависимости величины для каждой пары сейсмических трасс от удаления не наблюдается, поскольку фазовый сдвиг применяется к каждой трассе независимо от других трасс.

Процесс построения виртуального источника в частотной области включает умножение спектра одной сейсмической трассы на комплексно-сопряженный спектр другой (формула (1.24)). При этом обе трассы получены от одного источника и Рисунок 2.18: Пример изменения фазового спектра одной трассы а – в результате моделирования изменения контакта источника с грунтом, а также б – значения до суммирования для каждой трассы, вызванные вариациями фазы сигнала, излучаемого источником. имеют одинаковые фазовые сдвиги, которые исчезают в результате кросс-корреляции. Численное моделирование и использование сейсмограмм без предварительной обработки позволяет получить значение менее 0.5% после применения МВИ (рис. 2.19а). Однако применение фильтрации перед кросс-корреляцией ухудшает результат и уменьшает лишь до 6% (рис. 2.19б). Фильтрация применяется к сейсмограмме общего пункта приема, поскольку расстояние между соседними приемниками в 4 раза превышает расстояние между источниками. Каждая трасса на такой сейсмограмме имеет свой фазовый сдвиг, отличный от других трасс. После фильтрации эти сдвиги меняются, перестают быть постоянными для каждого конкретного источника, и МВИ не позволяет полностью удалить их из результирующей сейсмограммы.

Численное моделирование опорной съемки

Схожее распределение имеет величина , вычисленная для данных съемок только 2011 года (рис. 3.14а,б) или только 2012 года (рис. 3.14в,г). При этом вцелом повторяемость данных, полученных в течение одного года, выше. В случае съемок 2011 года после применения МДК воспроизводимость данных возрастает по сравнению с результатами МВИ по всему суммарному разрезу, где присутствует сигнал (рис. 3.14а,б). Для данных 2012 года улучшение после применения метода несущественно (рис. 3.14в,г). Таким образом, эффект от применения метода заметен в случае съемок, проведенных с Рисунок 3.14: Значения , вычисленные для суммарных разрезов данных 2011 года, полученных: а – с помощью МВИ; б – с помощью МДК; и для суммарных разрезов данных 2012 года, полученных: в – с помощью МВИ; г – с помощью МДК. интервалом в 10–20 дней и более. Данные, полученные с интервалом в 1 день, имеют схожую воспроизводимость после обработки как МВИ, так и МДК.

Как было отмечено в параграфе 3.2, данные с меньшей средней нормированной частотой имеют лучшую воспроизводимость. Для изучения зависимости повторяемости данных от частоты центральная частота сигнала, используемого при моделировании опорной функции , варьировалась в диапазоне 15–50 Гц. Для всех комбинаций суммарных разрезов были вычислены значения и усреднены для каждой съемки (рис. 3.15а). Видно, что средние значения после применения МДК меньше значений, полученных с помощью МВИ, во всем выбранном диапазоне частот. При этом наблюдается улучшение воспроизводимости с уменьшением центральной частоты сигнала до определенного предела. На графике зависимости средней для всех комбинаций съемок от центральной частоты сигнала, использованного в МДК (рис. 3.15б), минимум достигается для значения частоты 25 Гц. Дальнейшее уменьшение частоты ведет к росту . Как видно на спектрах суммарных разрезов (рис. 3.6а,б), именно в диапазоне 20–25 Гц сосредоточена основная энергия колебаний. При уменьшении центральной частоты сигнала в МДК на суммарном разрезе подавляются высокие частоты, имеющие худшую воспроизводимость. Однако в результате уменьшения частоты ухудшается разрешение изображения. Таким образом, при выборе параметров МДК следует учитывать и интерпретируемость результатов.

Вывод: В параграфе 3.3 рассмотрен отдельный случай применения МДК, когда данные опорной съемки получаются моделированием в однородной среде с тем же расположением приемников и источников, что и в реальном эксперименте. Основное улучшение воспроизводимости данных после применения МДК наблюдается при сравнении съемок 2011 и 2012 годов. При сравнении съемок только 2011 года или только 2012 года оба метода демонстрируют схожие результаты. Показано, что улучшение воспроизводимости происходит не только во временном окне, включающем отражение от резервуара, но и на всем суммарном разрезе в областях с достаточно высоким соотношением сигнал/шум. Заключение

В диссертационной работе исследуется влияние метода виртуальных источников объемных сейсмических волн на повторяемость сейсмических данных. Основные результаты работы заключаются в следующем.

1. На основе анализа основного уравнения МВИ показано, что данный метод не позволяет улучшить воспроизводимость данных в случае изменения амплитудного спектра сигнала. Для решения этой проблемы разработан новый метод – МДК.

2. Численное моделирование на примере модели горизонтально-слоистой среды, приближенной к реальности, продемонстрировало возможность улучшения повторяемости сейсмических данных с помощью МВИ и МДК. Рассмотрены такие сценарии ухудшения повторяемости данных, как изменение геометрии расположения источников и контакта источников с грунтом, а также вариации упругих параметров верхней части разреза, связанные с сезонными и суточными колебаниями температуры и влажности.

3. В результате применения методов к реальным данным наземных сейсмических съемок в Саудовской Аравии удалось улучшить повторяемость наблюдений по сравнению с традиционными методами обработки данных. Разработанный метод деконволюции-конволюции продемонстрировал лучшие результаты по сравнению с МВИ.

4. Для выполнения поставленных задач был создан программный код на языках программирования MATLAB и Fortran, реализующий МВИ и МДК в горизонтально слоистой синтетической модели среды. Кроме того, был создан код, оптимизированный для обработки значительных объемов реальных данных. Благодарности

Автор выражает искреннюю благодарность научному руководителю д. ф.-м. наук, профессору Борису Марковичу Каштану за обучение, консультации и помощь на всех этапах проведения исследований. Выражаю признательность Андрею Викторовичу Бакулину за ценные дискуссии и постоянное внимание к работе, а также компании Saudi Aramco за предоставление данных полевого эксперимента. Благодарю коллег из Лаборатории динамики упругих сред и технического университета г. Дельфта (TU Delft, the Netherlands) за научные дискуссии и дружескую поддержку. Большое спасибо сотрудникам кафедры физики Земли Санкт-Петербургского Государственного Университета и лично Владимиру Николаевичу Трояну за организацию научного процесса и создания условий для исследований.

Похожие диссертации на Применение метода виртуального источника сейсмических волн для мониторинга резервуара