Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Автоматизация распознавания локальных дефектов поверхностного слоя колец подшипников с применением вейвлет-преобразований при вихретоковом контроле в системе мониторинга Пчелинцев Дмитрий Олегович

Автоматизация распознавания локальных дефектов поверхностного слоя колец подшипников с применением вейвлет-преобразований при вихретоковом контроле в системе мониторинга
<
Автоматизация распознавания локальных дефектов поверхностного слоя колец подшипников с применением вейвлет-преобразований при вихретоковом контроле в системе мониторинга Автоматизация распознавания локальных дефектов поверхностного слоя колец подшипников с применением вейвлет-преобразований при вихретоковом контроле в системе мониторинга Автоматизация распознавания локальных дефектов поверхностного слоя колец подшипников с применением вейвлет-преобразований при вихретоковом контроле в системе мониторинга Автоматизация распознавания локальных дефектов поверхностного слоя колец подшипников с применением вейвлет-преобразований при вихретоковом контроле в системе мониторинга Автоматизация распознавания локальных дефектов поверхностного слоя колец подшипников с применением вейвлет-преобразований при вихретоковом контроле в системе мониторинга
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Пчелинцев Дмитрий Олегович. Автоматизация распознавания локальных дефектов поверхностного слоя колец подшипников с применением вейвлет-преобразований при вихретоковом контроле в системе мониторинга : диссертация ... кандидата технических наук : 05.13.06 / Пчелинцев Дмитрий Олегович; [Место защиты: Сарат. гос. техн. ун-т].- Саратов, 2009.- 154 с.: ил. РГБ ОД, 61 10-5/1047

Введение к работе

Актуальность работы. При производстве подшипников особую важность приобретают точное соблюдение технологического процесса (ТП) и контроль параметров качества шлифованных поверхностей деталей подшипников, которые можно разделить на две группы: геометрические и физико-механические. Геометрические параметры точности контролируются непосредственно метрическими измерениями детали, для контроля же физико-механических параметров применяются: травление, магнитно-порошковый и другие. Наиболее эффективным и перспективным с точки зрения автоматизации представляется вихретоковый метод, подробно рассмотренный в работах Дорофеева А.Л., Казаманова Ю.Г., Соболева В.С., Шкарлета Ю.М. и других ученых, изучавших электромагнитную дефектоскопию деталей. Ранее проведенные исследования осложнялись отсутствием необходимых вычислительных мощностей, что тормозило их ход. Однако эффективность использования данного метода в настоящее время показана в ряде работ, в том числе выполненных в СГТУ.

Анализ данных вихретокового контроля требует от оператора большой концентрации, высокой квалификации и хороших навыков работы с конкретным прибором. Из-за особенностей субъективного восприятия информации может значительно снижаться качество результатов контроля. В связи с этим при организации вихретокового контроля необходимо стремиться минимизировать влияние человеческого фактора, повысив эффективность контроля за счет разработки и применения методов автоматизированного поиска и классификации дефектов поверхностного слоя деталей подшипников. Которые, в свою очередь, будучи интегрированы в систему мониторинга технологических процессов (СМТП) в роли обратной связи, повышают ее эффективность, что в конечном итоге положительно влияет на качество конечной продукции. В СГТУ тема вихретокового метода контроля в СМТП производства деталей подшипников отражена в работах А.А. Игнатьева, В.В. Горбунова, а также в кандидатских диссертациях С.А. Игнатьева, О.В. Волынской, Е.В. Карпеевой, и А.Р. Бахтеева, однако имеющиеся автоматизированные системы вихретокового контроля, применяемые в подшипниковой промышленности, имеют ряд недостатков и не отвечают в полной мере указанным требованиям. Поэтому, основываясь на многочисленных фактах применения вейвлет-преобразований (ВП) для анализа локальных нестационарных особенностей разнородных сигналов, представляется целесообразным использовать данные ВП сигнала вихретокового преобразователя (ВТП) для выделения и распознавания локальных дефектов поверхностного слоя деталей подшипников.

Таким образом, повышение эффективности вихретокового метода контроля качества шлифованной поверхности колец подшипников за счет автоматизации поиска и распознавания типичных локальных дефектов поверхностного слоя, разработку необходимых методов анализа данных вихретокового контроля, позволяющих повысить качество результатов контроля, и использование полученных результатов в СМТП следует считать актуальной задачей.

Цель работы – совершенствование контроля качества шлифованной поверхности колец подшипников путем разработки метода автоматизированного поиска и распознавания локальных дефектов поверхностного слоя на основе анализа сигнала вихретокового преобразователя с использованием вейвлет-преобразований для последующей интеграции в систему мониторинга процесса шлифования. В соответствии с поставленной целью в работе решен ряд задач, направленных на разработку необходимых методов и алгоритмов.

Научная новизна работы заключается в следующем:

  1. Разработан метод автоматического выявления и распознавания типичных локальных дефектов поверхностей качения колец подшипников на основе анализа данных вейвлет-преобразования сигнала вихретокового датчика и методов теории распознавания образов.

  2. Обоснована методика применения вейвлет-преобразования для выделения участков сигнала ВТП, соответствующих локальным дефектам поверхностного слоя колец подшипников, вычисления классификационных признаков дефектов и применения многослойной нейронной сети в качестве классификатора, обученной с применением эталонных данных.

  3. Создан программный модуль, автоматически выделяющий из сигнала ВТП и распознающий локальные прижоги, метальные трещины и трооститные пятна по предложенным геометрическим классификационным признакам с передачей данных в систему мониторинга технологического процесса шлифования.

Методы и средства исследования. В основе проведенных исследований лежат методы теории автоматического управления, аппарат вейвлет-преобразований, теория распознавания образов. Обработка результатов вихретокового контроля велась с использованием специально разработанного программного обеспечения в среде MATLAB R2008a с использованием Wavelet Toolbox и Neural Network Toolbox. Экспериментальные исследования проводились с использованием автоматизированной системы вихретокового контроля (АСВК) на базе прибора вихретокового контроля ПВК-К2М в производственных условиях ОАО «Саратовский подшипниковый завод».

Практическая ценность и реализация результатов работы. Разработка методов автоматизации контроля качества шлифованной поверхности по данным вихретокового контроля проводилась в ОАО «Саратовский подшипниковый завод» в рамках задачи совершенствования автоматизированных средств контроля для системы мониторинга ТП и развития АСУ ТП предприятия.

На основе данных из СМТП осуществляется корректировка технологических процессов для снижения количества дефектов поверхностного слоя колец подшипников, которая выражается, в том числе, уточнением требований к качеству заготовок, и предварительным технологическим операциям (до финишного шлифования).

Разработанный на основе предложенных алгоритмов обнаружения и распознавания дефектов программный модуль расширяет возможности АСВК, позволяя обнаружить и распознать с высокой степенью достоверности основные типы дефектов поверхностного слоя контролируемых деталей, что снижает процент брака на 10-12%. Этот факт подтвержден соответствующими актами внедрения на ЗАО «НПК ПО» и ООО «НПП Подшипник-СТОМА» (Саратов).

Апробация работы. Основные положения работы докладывались на 5 конференциях различного уровня: V Международной научно-технической конференции «Прогрессивные технологии в современном машиностроении» (Пенза, 2009), Всероссийских: «Инновации и актуальные проблемы техники и технологий» (Саратов, 2009), «Высокие технологии в машиностроении» (Самара, 2008), «Совершенствование техники, технологий и управления в машиностроении» (Саратов, 2009), региональной конференции «Молодые ученые науке и производству» (Саратов, 2008), и на заседаниях кафедры «Автоматизация и управление технологическими процессами» СГТУ в 2008-2009 гг.

Публикации. По теме диссертации опубликовано 10 работ, в том числе 1 статья в журнале, включенном в перечень ВАК РФ; 5 статей опубликованы без соавторов.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, списка использованной литературы и приложения. Диссертация содержит 154 страницы, 49 рисунков, 6 таблиц, библиографический список из 117 наименований.

На защиту выносятся:

  1. Метод автоматического выявления и распознавания типичных локальных дефектов поверхностного слоя колец подшипников на основе анализа данных вихретокового контроля с применением ВП.

  2. Методика применения ВП для выделения участков сигнала ВТП, соответствующих локальным дефектам поверхностного слоя колец подшипников, вычисления геометрических классификационных признаков дефектов и их классификации с помощью многослойной нейронной сети, обученной с применением эталонных данных.

  3. Программный модуль, автоматически выделяющий из сигнала ВТП и распознающий локальные прижоги, метальные трещины и трооститные пятна, с возможностью передачи данных в СМТП шлифования.

  4. Результаты экспериментальных исследований и практического использования результатов применения разработанного автоматического программного модуля в СМТП шлифования колец подшипников.

Похожие диссертации на Автоматизация распознавания локальных дефектов поверхностного слоя колец подшипников с применением вейвлет-преобразований при вихретоковом контроле в системе мониторинга