Введение к работе
Актуальность темы. Производство автоматизированных систем управления оружием (АСУО) современных летательных аппаратов предполагает последующую опытную эксплуатацию сразу с полезной нагрузкой (либо коммерческой, либо по Госзаказу). Это приводит к значительному сокращению этапа летно-конструкторских испытаний, что вступает в противоречие с требованиями к уровню надежности поставляемой на рынок техники. Таким образом, принципиальное значение имеет организация наземной отработки АСУО, которая рассматривается как комплекс организационно-технических мероприятий по обеспечению экспериментального определения показателей качества и надёжности разрабатываемых систем, соответствия их характеристик установленным требованиям.
Наземная отработка АСУО осуществляется на основе лабораторно-стендовой испытательной базы с применением научно-обоснованных методик испытания. Для организации эффективной лабораторно-стендовой отработки необходимо развитие в следующих направлениях:
а) адресная разработка и модернизация стендовой базы;
б) разработка и внедрение автоматизированных информационно-измерительных и управляющих систем технического диагностирования в реальном времени испытаний;
в) создание единой информационной системы лабораторно-стендовой отработки, позволяющей объективно оценивать состояние отработки на требуемом интервале времени;
г) разработка и внедрение расчетно-экспериментальных методов наведения на исследовательском и отработочном этапах испытаний;
д) комплексирование стендовых изделий для организации комплексной отработки совокупности макросистем.
Современные стенды наземной отработки АСУО можно условно разделить на два вида. Стенды первого вида решают традиционную для всех поколений АСУО задачу моделирования инициализации, подготовки и безопасного применения всех типов авиационных средств поражения (АСП). Стенды второго вида дополнительно имитируют передачу и преобразование информации для прицеливания телевизионных, лазерных, инфракрасных и других типов головок самонаведения АСП, что свойственно последним, четвёртому и пятому, поколениям АСУО. Отработка АСУО на стендах первого вида проводится с использованием имитационных моделей АСП, управляющих комплексов и другого оборудования летательных аппаратов. При этом предусматривается регистрация результатов в виде циклограмм. Стенды второго вида предполагают отработку АСУО в соответствии с действующими методиками, включая проверку передачи информации по интерфейсам (каналам) целеуказаний.
Существующие стенды наземной отработки АСУО не обеспечивают достаточную точность локализации ошибок при диагностировании АСУО в части проверки информационных каналов целеуказаний. Отработка осуществляется только в статическом режиме при условии дискретизации аналоговых сигналов, что дополнительно снижает точность проверки функций по аналоговым интерфейсам управления. В результате возможен пропуск потенциальных источников ненадёжности в работе АСУО и, в частности, так называемых динамических ошибок наведения, определяемых пространственным рассогласованием между требуемой и реальной траекториями прицеливания и обусловленные инерционностью каналов преобразования и передачи информации АСУО. В боевой обстановке существенные динамические ошибки могут привести к потере цели, невыполнению полётного задания при работе по наземным целям и потере летательного аппарата или его экипажа при работе по воздушным целям. Для преодоления указанных недостатков в ОКБ «Авиаавтоматика» Курского ОАО «Прибор» выполняется проектирование и производство новых стендов наземной отработки, обеспечивающих более высокую точность локализации источников динамических ошибок при диагностировании работы АСУО по информационным каналам. Однако их построение требует разработки соответствующего математического, алгоритмического и программного обеспечения.
Таким образом, актуальной научно-технической задачей является разработка научных основ, моделей, алгоритмов и методик диагностирования АСУО на стендах наземной отработки для более точной локализации источников динамических ошибок системы по информационным каналам целеуказания.
Работа выполнена в рамках НИОКР, проводимых по заказу Кизлярского электромеханического завода по дополнительному соглашению №2 от 29.09.08 к договору №1194 от 22.03.07 с ОКБ «Авиаавтоматика» Курского ОАО «Прибор», а также совместных НИР ГОУ ВПО КурскГТУ и ОКБ «Авиаавтоматика» Курского ОАО «Прибор» (договор №1274, тема №1.219.08П).
Объектом исследования в диссертации являются стенды наземной отработки АСУО как управляющий комплекс имитации бортового радиоэлектронного оборудования летательных аппаратов.
Предмет исследования составляют процессы, методы и алгоритмы диагностирования АСУО по информационным каналам в динамических режимах тестирования на стендах наземной отработки.
Цель диссертации: повышение точности локализации источников динамических ошибок наведения в автоматизированных системах управления оружием летательных аппаратов при их тестировании в процессе производства на стендах наземной отработки на основе разработки нового подхода к проведению диагностики каналов целеуказаний, алгоритма и методики тестирования системы по информационным каналам.
Задачи исследований:
-
Анализ архитектуры современных АСУО и определение путей совершенствования стендов их наземной отработки как управляющего комплекса имитации бортового радиоэлектронного оборудования летательных аппаратов.
-
Разработка структурно-функциональной организации стендов наземной отработки АСУО, позволяющей производить оценку и локализацию динамических ошибок наведения в информационных каналах целеуказаний.
-
Синтез имитационной модели блоков АСУО, участвующих в обмене командами целеуказания по информационным каналам, позволяющей исследовать идеализированные траектории наведения и их изменение под воздействием динамических ошибок от различных источников.
-
Разработка алгоритма и методики проверки канала информационного обмена целеуказаниями АСУО в динамическом режиме на основе разработанной модели и создание комплекса программ для реализации диагностирования АСУО для более точной локализации источников динамических ошибок системы с применением предложенного алгоритма и методики.
-
Апробация разработанного алгоритма и методики на базе одного из существующих стендов отработки автоматизированных систем управления оружием в ОКБ «Авиаавтоматика».
Научная новизна работы:
-
Разработана структурно-функциональная организация аппаратно-программных средств стендов наземной отработки АСУО, позволяющая проводить проверки системы в динамическом режиме и более точно определять источники динамических ошибок наведения в каналах целеуказания.
-
Синтезирована имитационная модель блоков АСУО, участвующих в обмене командами целеуказания по информационным каналам, позволяющая адекватно описать потоки команд целеуказания для различных типов АСП, процессы коммутации, преобразования и распределения передаваемых команд, а также отработку полученных команд и обеспечивающая возможность исследования траекторий нацеливания под воздействием динамических ошибок от различных источников.
-
Разработаны научно обоснованные алгоритм и методика диагностирования АСУО, отличающиеся выделением элементарных траекторий наведения на цель (квадрат с диагоналями, эллипс, архимедова спираль) при декомпозиции реальных траекторий и позволяющие повысить точность диагностирования АСУО на 4% и выявить в 2,3 раза больше некондиционных блоков АСУО.
Достоверность полученных результатов обеспечивается корректным и обоснованным применением положений и методов теории автоматического управления, математической статистики, методов стохастического моделирования, а также результатами имитационного моделирования с использованием зарегистрированных в установленном порядке программных средств, протоколами информационного взаимодействия АСП с бортовым радиоэлектронным оборудованием и натурными испытаниями на образце ГСН-63 ракеты Х-29Т с применением стенда отработки АСУО на базе ОКБ «Авиаавтоматика».
Практическая ценность результатов диссертации заключается в повышении эффективности наземной лабораторно-стендовой отработки за счёт сокращения времени и уменьшения средств, выделяемых на отработку АСУО, при одновременном повышении точности локализации источников динамических ошибок до уровня отдельных каналов и их параметров.
Реализация и внедрение. Результаты диссертационного исследования используются при разработке и производстве стендов отработки систем управления оружием в ОКБ «Авиаавтоматика».
Апробация работы. Основные результаты диссертационной работы докладывались и получили положительную оценку на следующих конференциях и семинарах: на третьей научно-практической конференции «Проблемы развития унифицированных систем управления оружием» (г. Курск, 2002 г.), на международной конференции «Системные проблемы надёжности, качества, информационных и электронных технологий» (г. Москва, 2004 г.), на четвёртой научно-практической конференции «Перспективы развития систем управления оружием» (г. Курск, 2007 г.), на региональной научно-методической конференции «Современные проблемы высшего профессионального образования» (г. Курск, 2009 г.), на Международной научно-технической конференции «Информационно-измерительные, диагностические и управляющие системы» (г. Курск, 2009 г.), а также на научных семинарах ОКБ «Авиаавтоматика» и кафедры вычислительной техники КурскГТУ с 2000 по 2009 г.
Научные результаты, выносимые на защиту:
-
Структурно-функциональная организация аппаратно-программных средств стендов наземной отработки АСУО, позволяющая проводить проверки системы при работе с различными типами АСП и производить локализацию источников динамических ошибок в каналах целеуказаний с более высокой точностью (до уровня отдельных каналов и их параметров).
-
Имитационная модель основных блоков АСУО, принимающих участие в обмене командами целеуказания по информационным каналам, позволяющая адекватно представить потоки команд целеуказания для заданного множества типов АСП, процессы коммутации, преобразования и распределения передаваемых команд, отработку полученных команд, и обеспечить возможность исследования траекторий наведения под воздействием динамических ошибок от различных источников.
-
Алгоритм диагностирования АСУО, позволяющий повысить степень локализации источников динамических ошибок путём проверки функционирования системы вблизи граничных значений углов наведения при нацеливании по элементарным траекториям, композиции которых составляют реальные траектории наведения (квадрат с диагоналями, эллипс, архимедова спираль).
-
Методика тестирования информационного канала целеуказаний АСУО в динамическом режиме, обеспечивающая возможность унифицированной проверки работоспособности системы с различными типами АСП и локализации источников динамических ошибок на стендах наземной отработки с использованием разработанного алгоритма.
-
Комплекс программ для реализации диагностирования АСУО на стендах наземной отработки и результаты апробации предложенного алгоритма и методики на базе стенда наземной отработки АСУО 30ПИ (30ПК) в ОКБ «Авиаавтоматика»
Публикации. Основные результаты диссертации опубликованы в 8 печатных работах, среди которых имеется 1 статья в научном издании, входящем в Перечень ВАК Минобрнауки РФ, и 1 свидетельство о регистрации программы для ЭВМ.
Личный вклад автора. В работах, опубликованных в соавторстве и приведенных в конце автореферата, лично соискателем выполнено следующее: в [1, 2, 4, 5] разработана структурная организация стендов наземной отработки АСУО; в [3] предложена концепция отработки изделий АСУО на стендах в ОКБ «Авиаавтоматика»; в [6, 8] описаны особенности моделирования коммутационных блоков, используемых в составе АСУО; в [7] разработан ряд принципов диагностирования блоков АСУО.
Объем и структура работы. Диссертационная работа состоит из введения, четырех разделов, заключения, списка литературы, включающего 45 источников, и приложений. Работа содержит 160 страниц текста вместе с приложениями, 35 рисунков и 2 таблицы.
Области возможного использования. Результаты диссертационного исследования будут использованы в процессе производства стендов наземной отработки автоматизированных систем управления оружием пятого поколения в ОКБ «Авиаавтоматика» и ИМК26 «ГосНИИаС».