Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Салеев Дмитрий Владимирович

Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ
<
Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Салеев Дмитрий Владимирович. Алгоритмическое обеспечение подсистемы оптимизации технологического процесса производства интегральных схем типа ТТЛ: диссертация ... кандидата Технических наук: 05.13.06 / Салеев Дмитрий Владимирович;[Место защиты: Тамбовский государственный технический университет], 2016

Содержание к диссертации

Введение

1 Анализ исследований в области управления качеством при производстве интегральных схем 13

1.1 Исследование существующих теорий контроля качества продукции 13

1.2 Анализ технологического процесса производства интегральных схем 16

1.3 Анализ технологического процесса производства интегральных схем как объекта управления 20

1.4 Целевая функция технологического процесса производства интегральных схем 23

1.5 Анализ современных методов оптимизации технологических процессов и контроля качества производства интегральных схем и постановка задачи

исследования 27

Выводы к главе 1 37

2 Разработка подсистемы оптимизации технологического процесса производства интегральных схем 38

2.1 Сравнение статистических и адаптивных методов оптимизации технологических процессов 38

2.2 Анализ современных САПР для проектирования интегральных схем 39

2.3 Разработка подсистемы адаптивного управления как части автоматизированной системы управления технологического процесса производства интегральных схем 42

2.4Задача оптимизации и анализ методов многокритериальной оптимизации технологических процессов 46

2.5 Алгоритм выделения главного критерия качества технологического процесса производства интегральных схем 50

2.6 Модификация метода анализа иерархий Т. Саати для выбора лучшего технического решения при производстве интегральных схем 54

2.7 Алгоритм выбора технологического оборудования при производстве новой серии интегральных схем 58

2.8 Алгоритм управления технологическим процессом производства интегральных схем 64

2.9Алгоритм выбора режима построения модели технологического процесса 76

Выводы к главе 2 83

3 Моделирование управления технологическим процесом производства интегральных схем с использованием алгоритма управления технологическим процессом производства интегральных схем (с подстройкой модели) 84

3.1 Моделирование управления технологическим процессом производства интегральных схем с подстройкой модели 84

3.2 Реализация алгоритма управления технологическим процессом производства для интегральных серий 130 и 533 91

Выводы к главе 3 105

4 Формирование математических моделей технологических операций при производстве интегральных схем 106

4.1 Классификация и анализ методов аппроксимации нелинейных характеристик 106

4.2 Построение модели операции ионной имплантации 116

4.3 Алгоритм построения модели технологических операций производства интегральных схем 120

Выводы к главе 4 124

Заключение 125

Список литературы

Введение к работе

Актуальность темы. Повышение эффективности производства с целью обеспечения требуемого уровня качества изделий в условиях налаженного технологического процесса (ТП) рассматривается как важная научно-техническая проблема, решение которой особенно важно при производстве интегральных схем (ИС).

В научно-технической литературе большое внимание уделяется проблемам регулирования и управления ТП: известны работы авторов по данной тематике Я. Е. Львовича, В. В. Токарева, А. Е. Егорова и других Алгоритмы оптимизации и регулирования ТП производства ИС строятся в работах российских ученых В. К. Дорошевича, Ю. А. Долгова, в США исследования в данной области проводятся Д. А. Ходжсом, Д. Хурингом, Г. Смитом, в Белоруссии вопросы надежности ИС изучает группа ученых под руководством Д. Л. Ануфриева.

В сложившихся экономических условиях – с учетом роста курса доллара и евро, действующих в отношении России санкциях западных стран по запрету на продажу высокотехнологичного оборудования, в том числе для производства изделий микроэлектроники, а также реализующимися программами по созданию «Отечественной электронной компонентной базы, используемой при производстве вооружений, военной и специальной техники» и «Импортозамещению технологического оборудования и комплектующих изделий для производства вооружений, военной и специальной техники», необходимо проведение мероприятий, позволяющих производить на отечественном оборудовании ИС для различных отраслей промышленности.

Эффективное управление производством ИС может быть достигнуто при использовании современных подсистем оптимизации ТП с учетом его особенностей: влияния качества и неоднородности исходных материалов на качество ИС, групповой характер производства, многокритериальность, возможностью изготовления новой серии и (или) нового типа ИС с уровнем качества, отличным от ранее требующегося.

Таким образом, актуальность темы определяется необходимостью алгоритмизации подсистемы оптимизации конкретного класса ИС с целью повышения выхода годных.

Цель диссертационной работы – обеспечение заданного уровня качества производимых ИС типа ТТЛ и алгоритмизация соответствующей подсистемы оптимизации ТП производства ИС с целью повышения процента выхода годных ИС.

Для достижения поставленной цели ставятся следующие задачи:

провести исследование ТП производства ИС как объекта управления и современных САПР, выявить существующие недостатки и поставить задачу оптимизации;

разработать на основе проведенного анализа функциональную схему подсистемы оптимизации ТП процесса ИС;

проанализировать существующие подходы к многокритериальной оптимизации для применения в подсистеме оптимизации ТП производства ИС;

построить алгоритмы поиска оптимальных вариантов производства ИС – алгоритм построения математических моделей в условиях недостатка практиче-

ских данных, алгоритм выбора оборудования, алгоритм управления ТП с подстройкой модели;

провести имитационное моделирование работы ТП производства ИС с подстройкой модели, а также выдать рекомендации по корректировке настройки оборудования для важнейших процессов (операций) ТП производства ИС;

разработать алгоритм формирования математических моделей отдельных технологических операций при производстве ИС.

Методы исследования. При проведении исследований в работе использовались методы многокритериальной оптимизации, системного анализа, дискриминационный метод оптимизации, элементы нечеткой логики, теории принятия решений, численные методы.

В диссертации получены следующие основные положения, выносимые на защиту и характеризующиеся научной новизной:

разработан алгоритм управления ТП производства ИС, компенсирующий влияние возникающих в ходе ТП неконтролируемых параметров (случайной и постоянной составляющих, в том числе устаревание оборудования) на итоговое качество производимых ИС;

разработаны алгоритмы корректировки параметров ТП производства наиболее трудоемких технологических операций для отечественных серий ИС, обеспечивающие получение ИС с заданными параметрами и направленные на повышение процента выхода годных, с учетом особенностей конкретного оборудования, на котором изготавливаются данные ИС;

предложена математической модель температуры кремниевой пластины в ходе операции некогерентного отжига, позволяющая с высокой точностью реали-зовывать температурно-временные режимы отжига пластин по заданной программе;

сформирован алгоритм построения модели технологических операций, отличающийся тем, что он позволяет с большей точностью в сравнении с используемыми в настоящее время в ТП моделями аппроксимировать функциональные зависимости технологических операций ТП производства ИС;

разработана функциональная схема подсистемы оптимизации ТП производства ИС, отличающаяся наличием модулей оптимизации и управления, определяющая механизм взаимодействия разработанных алгоритмов.

Практическая значимость результатов работы:

применение разработанного алгоритма управления ТП производства ИС с подстройкой модели в подсистеме оптимизации процесса производства позволяет добиться улучшения выходных параметров ИС;

функциональная схема подсистемы оптимизации ТП производства ИС определяет основные требования к алгоритмам управления и составу технологического оборудования;

использование алгоритмов поиска оптимального управленческого решения позволяет получать ИС с заданным уровнем качества с учетом их дальнейшего применения;

применение предложенного алгоритма аппроксимации позволяет проводить аппроксимацию практических данных с меньшими вычислительными затратами и большей точностью по сравнению с известными методами аппроксимации.

Тематика работы соответствует следующему пункту паспорта специальности 05.13.06 – Автоматизация и управление технологическими процессами и производствами (по отраслям):

4. Теоретические основы и методы математического моделирования организационно-технологических систем и комплексов, функциональных задач и объектов управления и их алгоритмизация.

Достоверность результатов обусловлена строгим математическим обоснованием используемых методов, результатами математического моделирования, а также сравнением с теоретическими данными, известными в литературе.

Основные положения, выносимые на защиту:

  1. алгоритм управления ТП производства ИС с подстройкой модели с использованием обобщенного критерия качества;

  2. алгоритм выбора режима построения модели ТП производства ИС;

  3. алгоритм построения аппроксимационной модели технологических операций производства ИС;

  4. функциональная схема подсистемы адаптивного управления ТП производства ИС.

Полученные теоретические и практические результаты были использованы при выполнении работ ФКА «Роскосмос» ОАО «Турбонасос» (с привлечением соисполнителей). Разработанные алгоритмы внедрены в учебный процесс «Воронежского института высоких технологий» – АНОО ВО.

Апробация работы. Основные положения диссертационной работы докла
дывались и обсуждались на следующих научно-технических конференциях: Меж
дународной молодежной конференции «Математические проблемы современной
теории управления системами и процессами», г. Воронеж, 2012 г.; Международ
ной молодежной конференции «Микроэлектронные информационно-
управляющие системы и комплексы», г. Воронеж, 2012 г.; IX Международной
научно-практической конференции «Техника и технология: новые перспективы
развития», г. Москва, 2013 г.; XII Всероссийской научно-технической конферен
ции «Новые технологии в научных исследованиях, проектировании, управлении,
производстве (НТ ВГТУ – 2013)», г. Воронеж, 2013 г.; XV Международной науч
но-практической конференции «Современное состояние естественных и техниче
ских наук», г. Москва, 2014 г.; XVI Международной научной конференции «Ак
туальные вопросы современной техники и технологии», г. Липецк, 2014 г.; VII
Международной научно-практической конференции «Фундаментальные и при
кладные исследования в современном мире», г. Санкт-Петербург, 2014 г.; конфе
ренции и семинары направления САПРИС Воронежского института высоких тех
нологий (2011-2015 гг.).

Публикация результатов работы. По теме диссертации опубликовано 14 научных работ, в том числе 5 в изданиях, рекомендованных ВАК РФ,

1 работа – в иноязычном издании, включенном в международную систему цитирования Web of Science, 2 работы написаны с другими авторами.

Структура и объем диссертации. Диссертационная работа состоит из введения, четырех глав, заключения, списка используемой литературы и приложений. Общий объем работы составляет 144 страницы машинописного текста, включая 41 рисунок, 11 таблиц, список литературы состоит из 127 наименований.

Анализ технологического процесса производства интегральных схем как объекта управления

Оценка степени влияния, наличия связей между входными и выходными параметрами должна быть получена на основе анализа данных в ходе ТП: формируется модель процесса (теоретическая / эмпирическая), формируемая на основе анализа физических или химических процессов, либо статистическая, составляемая на основе анализа практических данных) и каждой технологической операции.

На основе этих моделей строятся алгоритмы управления, определяются (рассчитываются) значения управляющих параметров, обеспечивающих требуемое качество производимых изделий. Операции в ходе ТП можно разделить на несколько групп: - операции контроля (измерения) – т.е. операции, в ходе которых определяются или измеряются параметры ТП; - формирующие или производственные операции – формируются параметры изготавливаемого изделия; вспомогательные – различные подготовительные операции, операции коррекции процесса (воздействия на процесс со стороны системы управления) и другие.

Схема ТП производства ИС В общем случае схема ТП производства ИС представлена на рисунке 1.5. ТП изготовления ИС относится к классу дискретных [16]: операции разделены во времени: только по окончании одной операции, начинается следующая: то есть операция (n+1, n=0,1,2 …m) начинается по окончании операции n, затем начинается n+2) [83]. Таким образом, при разработке подсистемы оптимизации необходимо учитывать, что значения выходных параметров на большинстве технологических операции при производстве ИС могут быть измерены только по ее окончании и до начала следующей [83] и фактически измерения (операции контроля) также проходят дискретно.

ИС состоит из множества соединенных между собой микроэлектронных элементов в поверхностном слое кристалла. Как отмечено ранее, одной из особенностей развития микроэлектроники является уменьшение размеров изготавливаемых ИС при одновременном увеличении числа элементов [83].

В настоящее время технологии позволяют изготавливать ИС, состоящих до одного миллиона элементов и более – БИС и СБИС.

ТП производства таких ИС состоит из сотен последовательных операций по формированию структурных слоев [52, 62]. Главной технологической задачей является формирование этих структурных слоев с наиболее высокой точностью.

Этого можно достичь с использованием различных методов оптимизации, адаптивного управления, корреляционным анализом и прочим в алгоритмах управления ТП: проводится учет неконтролируемых параметров на ТП и на каждую операцию [4, 73].

Общая модель ТП это последовательность частных моделей, описывающих все технологические операции. При производстве ИС, необходимо составить модель ТП или отдельной операции в целом для использования в алгоритме управления.

Данная модель в дальнейшем будет корректироваться в ходе опытной отработки оборудования, а также с учетом конкретных технических требований для конкретного изделия.

Управление ТП позволяет создать алгоритмы выбора, уточнения и корректировки режимов работы, для улучшения качества изготавливаемой продукции и на увеличение процентного выхода годных изделий [57, 85, 104].

Главным показателем эффективности ТП производства ИС является значения показателя выхода годных, что, в свою очередь, зависит от стабильности условий производства (качества исходных материалов, налаженности ТП, правильности технологии контроля и т.д.) [36, 52].

Необходимость управления ТП определяется тремя основными факторами: 1. технические характеристики входных и выходных компонентов должны поддерживаться на требуемом уровне от партии к партии; 2. остановка каждой технологической операции должна выполняться в соответствии и имеющимися алгоритмами, синхронизирующими включение или отключение или изменение воздействия на процесс со стороны различного оборудования; 3. постоянный технологический износ оборудования требует регулярной коррекции параметров процесса. Запишем полную модель ТП как последовательность отдельных технологических операций. Рассмотрим (7-1)-ю операцию ТП. ut=F(ut_1,vt), где щ это параметры качества ИС на текущей операции (конструктивные), v,- -вариант производства, то есть некоторая совокупность воздействующих на процесс изготовления параметров, задаваемых системой управления. Однако необходимо учитывать, что фактически требуются не параметры качества ИС (глубина р-п перехода, доза внедренных ионов и прочие), а конструктивные параметры, зависящие от них (быстродействие, стойкость к радиационным воздействиям и прочие), то есть: gt=F\ut_1,kt), где gt - это контролируемые параметры текущей операции, kt - это конструктивные параметры.

Процесс изготовления ИС является по существу последовательным переходом из одного состояния в другое по некоторой траектории.

Так как целью проведения ТП является получение заданных характеристик производимых ИС, то для использования в управлении режимами производства и в ТП, необходимо получить несколько (множество) функций (траекторий), позволяющих управлять ТП: происходит коррекция (подстройка) по конечному состоянию. Фактически, необходимо решить задачу траекторного управления, то есть найти оптимальное решение из множества с учетом заданных характеристик изготавливаемой ИС - то есть подобрать такие значения управляющих воздействий, чтобы выходные характеристики изготавливаемой ИC ,"(где п -общее число операций в ТП) были максимально совпадающими с требуемыми [56, 115].

Исходными данными к разработке системы управления является некоторая базовая технология производства ИС. Выбор такой технологии означает, что существует последовательность технологических операций и установлены ограничения на управляющие переменные.

Анализ современных САПР для проектирования интегральных схем

Основная задача для повышения эффективности ТП состоит в создании и настройке (подстройке под конкретные параметры выходных характеристик ИС в зависимости от типа изделия, производимого в данный момент): в АСУ ТП помимо функции управления текущим ТП, должна быть реализована возможность хранения данных (система баз данных), являющихся характеристиками ТП и (или) влияющими на конечные характеристики изготавливаемых ИС – настроек оборудования в зависимости от типа производимой ИС, показания КИП (датчиков) в момент производства ИС, записи сообщений о сбоях и ошибках в ТП, которые впоследствии можно будет использовать для прогнозирования выхода годных изделий при производстве новой серии аналогичных ИС, для анализа параметров ТП – настроенности, эффективности с целью их улучшения, поиска ошибок в ТП, оценки экономической эффективности производства ИС данной серии [69, 120].

АСУ ТП должна состоять из нескольких модулей (подсистем) – подсистемы управления технологическими операциями (каждой технологической операции), управления режимами ТП, модуля управления транспортными операциями, подсистемы межоперационного контроля и работать в режиме реального времени.

Таким образом, АСУ ТП производства ИС должна обеспечивать трансляцию информации от конструктора до производства, имея при этом обратные связи, которые позволяют вести разработку новых модификаций, устранять ошибки, выявленные в ходе производства, производить текущий контроль производства.

Для оптимизации производства в составе АСУ ТП применяются различные системы управления качеством производимых изделий, в состав которых входят подсистемы оптимизации производства [120].

Под предлагаемой автором данной работы подсистемой оптимизации понимается автоматизированная система, обеспечивающая различные виды воздействий на ТП производства ИС на любом этапе производства с целью улучшить качество выпускаемой продукции: уменьшить количество бракованных (или не соответствующих техническим требованиям, предъявляемым к изделиям согласно техническому заданию (негодных)), улучшить качество производимой в данной момент серии ИС, используя ранее полученные данные [103, 120].

Структура подсистемы оптимизации ТП производства ИС определяется требованиями к эффективности процесса производства, разнообразием изготавливаемых устройств, а также возможностью гибкой настройки типов изготавливаемых микросхем, загрузки ранее используемых значений параметров ТП, возможностью изменения параметров в ходе ТП оператором или технологом.

Функциональная схема подсистемы оптимизации производства интегральных схем может быть построена в соответствии с принципами, изложенными в известных работах по данной проблеме [46, 47, 66, 85, 116, 123].

Разработанная нами функциональная схема [120] подсистемы оптимизации представлена на рисунке 2.2.

Основой модуля автоматизированного задания является головная программа, осуществляющая передачу настроек и параметров ТП производства ИС с целью корректировки настроек оборудования и поддержания заданного уровня качества производимых изделий. Для возможности корректировки ТП в ручном режиме предназначены программы обработки сообщений и программы диалогового взаимодействия. Программы ИС С помощью модуля ввода и вывода оператор может выгрузить из базы данных текущие настройки, либо задать их в ручном режиме (посредством ручного ввода или загрузки из файла историй настроек, использовавшихся при производстве микросхем ранее), а также указать характеристики используемых материалов (сырья).

В модуле оптимизации составляется список операций, получаемого из системы управления верхнего уровня для данного конкретного ТП и проводится его анализ: задается точность оптимизации и параметры производства (настройки оборудования).

Полученная информация передается в модуль прикладных моделей, который характеризуется наличием аналитических, статистических моделей (теоретических, а также практических, составленных с использованием метода регрессионного анализа [105]) основных операций ТП производства ИС: отжига, окисления, имплантации и прочих для определения «точек контроля». Здесь происходит определение входных и выходных параметров для каждой последовательной операции ТП и формирование целевой функции оптимизации.

Ключевой особенностью предлагаемой нами подсистемы оптимизации производства ИС является модуль управления. В нем используется алгоритмы управления (с подстройкой модели) [74, 100]. Данный модуль в процессе производства формирует и уточняет математическую модель, полученную из модуля прикладных моделей, а также передает ее в модуль автоматизированного задания: проводятся процедуры максимизации целевой функции ряда дискретных аргументов при наложении функциональных, топологических ограничений [78, 83, 120]. Полученные настройки оборудования, параметры процесса и выражения для управления заносятся в базу данных для возможности анализа процесса и загрузки при производстве следующих партий ИС.

Реализация алгоритма управления технологическим процессом производства для интегральных серий 130 и 533

Фактическое значение рассчитывается путем подстановки в целевую функцию вместо текущих значений Yтек, величин, измеряемых на выходе ТП.

Расчетное значение нами предлагается найти подстановкой значений выходных переменных Y1i и Y2i, рассчитанных по математической модели.

При этом если модуль разности не превышает некоторого допустимого значения, считается, что математическая модель адекватно описывает реальный ТП и может использоваться для управления процессом. В остальных случаях математическая модель требует уточнения.

Значения управляющих и выходных переменных для i-гo момента обозначим через U1i, U2i, U1i, U2i. Взаимодействие с системой управления предлагается организовать следующим образом: Передача данных в систему управления начинается в момент времени t=t0=0. С момента начала ТП требуется некоторый промежуток времени (с момента t=t0 до t=ti, i=1,2…n) для сбора сведений о текущем состояний системы: настройках оборудования, заданных алгоритмах производства ИС и прочего. В момент времени t=ti начинается реализация алгоритма управления. Включение системы управления (то есть управление ТП) начинается с момента времени ti ,то есть с момента включения технологического оборудования. В процессе управления передаваемые данные заносятся в систему управления и записываются в файлы истории ТП через определенный промежуток времени.

При оптимизации ТП следует ограничить данные передаваемые в систему управления, используемые в настоящий момент: нужно применять данные за последний промежуток времени – t, так как ранее записанные данные являются устаревшими. Начало Измерение выходных переменных текущей операции Вычисление расчетного и фактического значений целевой функций Fфактич_i , Fрасч_i Уточнение параметров модели и параметров уравнений адаптивных уравнений I Расчет Xопт Передача сигнала в АСУ на корректировку режима работы Нет Рисунок 2.11 – Алгоритм управления ТП производства ИС Момент времени t=0 – момент первого измерения параметров ТП. Величина t подбирается с учетом времени проведения каждой технологической операции.

Таким образом, АСУ ТП получает и передает данные, необходимые для адаптации под фактическое состояние ТП. Для определения влияния степени воздействия с помощью системы управления под фактическое состояние процесса для производства последующих серий изделий используется регрессионный анализ и данные, переданные в АСУ ТП.

Одним из основных элементов разрабатываемой подсистемы оптимизации ТП является модуль управления (параграф 2.3), одним из назначений которого является получение математической модели, связывающей параметры качества выпускаемой продукции на каждой технологической операции в зависимости от выбранных настроек технологического оборудования, исходных данных от предыдущих операций (входных параметров для текущей операции), а также величины текущего воздействия на производимое изделие.

Полученная таким образом модель используется в алгоритме управления ТП по любому из параметров качества [78].

Для практической реализации, необходимо информационно-вычислительное устройство, канал передачи данных с технологической системой с обратной связью (двунаправленный), использование данных контрольно-измерительных приборов (датчики) системы управления ТП производства ИС для контроля входных, выходных параметров процесса, а также воздействий на процесс [91]. Рисунок 2.12 – Структурная схема модуля управления

Предлагаемая структурная схема блока подстройки математических моделей технологической системы представлена на рисунке 2.12. Систему автором предлагается разрабатывать на базе существующей системы управления ТП производства ИС (блок АСУ на рисунке 2.1), в составе: системы технологического оборудования (ТО); системы датчиков (КИП), снимающих информацию о текущем значении параметров качества; ПЛК.

Контроллер предназначен для организации обмена информацией датчиков с ЭВМ и технологической системой. Связь ЭВМ с контроллером осуществляется через стандартный интерфейс RS-485 / RS-232 [60, 96].

Функциональная схема блока подстройки математических моделей технологической системы представлена на рисунке 2.13.

Программное и алгоритмическое обеспечение блока подстройки математических моделей можно разделить на две части.

Первая часть относится к алгоритмическому обеспечению аппаратной части системы управления ТП производства ИС и выполнение заданного режима работы и запись информации в базу данных для возможности в дальнейшем оценки качества производимой в данной партии ИС.

Алгоритм можно разделить на несколько блоков: блок «Анализ исходных данных» предназначен анализа исходных данных перед началом текущей операции.

К исходным данным относятся: исходное сырье (материалы), режимы работы, перечень параметров качества которые необходимо обеспечить в ходе производства, и их требуемые значения. По введенным данным модуль управления устанавливает, существует ли ранее использовавшаяся математическая модель, полученная при производстве предыдущих партий ИС [36, 68, 73].

Построение модели операции ионной имплантации

Рассмотрим в качестве примера график зависимости толщины окисла от времени при постоянных температуре и давлении газообразного окислителя.

На рисунке 4.2 представлена теоретическая зависимость толщины окисла от времени окисления при постоянных температуре и давлении газообразного окислителя, на рисунке 4.3 – экспоненциальная аппроксимация вышеуказанной характеристики.

Существенным недостатком экспоненциальной аппроксимации является ограниченность его применения [7, 9].

Данный метод аппроксимации обеспечивает высокую точность аппроксимации нелинейных характеристик на требуемом участке, но для ограниченного числа характеристик: характеристика функции должна быть по форме похожа на экспоненту, в противном случае погрешность аппроксимации существенно возрастает [9, 30].

К преимуществам использования данной аппроксимации стоит отнести достаточно простые расчеты коэффициентов аппроксимации. Кусочно-линейная аппроксимация.

Основной принцип кусочно-линейной аппроксимации состоит в том, чтобы исходная зависимость разбивается на несколько отрезков небольшой длины, на которых она имеет вид близкий к линейному. Таким образом, на каждом участке зависимость аппроксимируется функцией вида: F(x) = Kx + b где К и Ъ это некоторые коэффициенты. Результатом аппроксимации будет некоторая функция: (К0х + Ь0,х = 0...х0 K1x + b1,x = x0...x1 F(x)=.... Кхп + bn,x = xn_1...xn Недостатком аппроксимации такого вида является возможность разрыва аппроксимирующей функции в местах х0, xh…, xn. Однако, исходя из принципов формирования полупроводниковых подложек и ИС, разрывы в аппроксимационной функции физически не могут быть обоснованы.

Исходя из этого, при применении данного вида аппроксимации, требуется выполнение условия согласованности (сходимости) соседних отрезков: F(xt) = Ktxt + bt = Ki+1xt + bi+1 i = 0...n что может привести в конечном итоге к увеличению числа отрезков, либо к существенному возрастанию погрешности аппроксимации.

Для недопущения разрыва функции в точках перехода, для каждой линии из двух отрезков (ломаная линия из двух прямолинейных отрезков) используются выражение вида: F(x) = —(\x\ + x) Достоинством кусочно-линейной аппроксимации является простая форма аппроксимирующей функции (выражения для расчета коэффициентов) и малые вычислительные затраты. Аппроксимация зависимости представлена на рисунке 4.4.

Результаты кусочно-линейной аппроксимации (сплошная линия) зависимости толщины окисла от времени окисления при постоянных температуре и давлении газообразного окислителя (число разбитий = 16). Существенным недостатком кусочно-линейной интерполяции – в точках стыка двух отрезков имеется излом. При аппроксимации нелинейных характеристик с высокой степенью точности, необходимо увеличение количества отрезков, на которых данная функция рассматривается, что в конечном итоге потребует значительных вычислительных затрат. При этом увеличение числа отрезков требует увеличения числа практических (экспериментальных) данных, что возможно далеко не всегда.

Полиномиальная аппроксимация. Для полиномиальной аппроксимации используется следующее выражение: т=Ъу (4.2) г=0 где п (п=0,1,2…т - степень полинома, Kt - коэффициенты аппроксимации, т -порядок полинома. При порядке полинома равном единице, выражение (4.2) представляет собой по сути выражение для линейной аппроксимации. С увеличением порядка полинома (степени полинома), ошибка аппроксимации уменьшается [44].

Для нахождения коэффициентов аппроксимации наиболее часто для широкого круга задач используется метод наименьших квадратов [44], который состоит в следующем: проводится поиск таких значений коэффициентов регрессии, при которых сумма квадратов отклонений теоретического распределения от фактического (экспериментального) была бы наименьшей: m .-F(jc,.))2- min V 2=1 где (хь F(x{)), (х2, F(x2))… (xN, F(xN)) - заданный набор точек (экспериментальные данные). Аппроксимационная функция ищется в виде многочлена т-ой степени: F(xt ) = К0 + K1xt + K2x2 +... + Ктх = J К$ 7=0 Требуется найти набор коэффициентов аппроксимации Ц}, для которых значения функции/ будет максимально приближена к практическим данным. Для этого (4.1) дифференцируется по каждому из параметров я,- и приравнивается к нулю.

В общем случае получается система уравнений, которая решается в матричном виде. Результаты аппроксимации экспериментальных данных зависимости глубины залегания бора в кремнии. Вид аппроксимации Вид функции аппроксимации Погрешность аппроксимации Числоопераций(асимптотическаяоценка) Экспоненциальная F(x) = F0-exp(Kx-b) 2,510-2 O(log n) Кусочно-линейная F{x) = Kx + b 1,14 Ю-2 Зависит отчисла разбиений0(п2) Полиномиальная(метод наименьшихквадратов) г=0 2,16 КГ4 (п=4) О(п) Сравнение результатов аппроксимации зависимости толщины окисла от времени окисления при постоянных температуре и давлении газообразного окислителя представлены в таблице 4.2.

Таким образом, наибольшую точность показал метод наименьших квадратов, предлагается использовать его для аппроксимации функциональных зависимостей в алгоритме построения моделей технологической операции подсистемы оптимизации ТП производства ИС.

Рассмотрим процесс ионной имплантации на примере имплантации бора в кремнии, как одним из наиболее часто используемых при производстве ИС в настоящее время [57, 86].

Из теоретических данных [10, 74] известно, что профиль внедренных ионов представляется в виде гауссовой кривой с максимумом концентрации примеси на глубине Rp: где Щх) - концентрация внедренной примеси, L доза ионов, Rp - средний пробег ионов, ARP - дисперсия среднего проективного пробега. Однако на практике при имплантации, форма профиля внедренных ионов может существенно отличаться от гауссовой. Причины данного несоответствия теоретических и практических данных связаны, в частности, с тем, что происходит диффузионное перераспределение примеси, а также наблюдается эффект каналирования, а также влияют другие факторы [43].